

GAS Series Structure Introduction	•	•	•	•	•	•	•	•	P3
GAS Series Functioning Theorem	•	•	•	•	•	•	•	•	P4
GAS Series Precision Measurement	•	•	•	•	•	•	•	•	P6
GAS Series Feeding Calculation Formula	•	•	•	•	•	•	•	•	P7
GAS Series Feeding Calculation Example	•	•	•	•	•	•	•	•	Р9
GAS Series Cryogenic Treatment	•	•	•	•	•	•	•	•	P10
Crossed Roller Loading Ability	•	•	•	•	•	•	•	•	P11
Quick Menu	•	•	•	•	•	•	•	•	P12
Outline & Dimensions	•	•	•	•	•	•	•	•	P13

- X Abnormal status judgment made within the warranty period (one year after shipment); any problem caused from overload or improper installation or similar one is beyond the warranty scope.
- % Please contact us first for the export of our products in a single-piece, or export-purpose sales of our products & technologies, the basic policy is to comply with the respective foreign exchanges, trade acts and other related enactments.
- X We produce this catalog in a very serious manner; yet, we cannot be responsible to any possible error or missing texts in it.
- O Due to the consistent upgrading in providing the best quality & services to clients, GMT hereby declare that we hold the engineering-change right of our products. For any change on our catalog, we won't make exceptional notice to customers.

Index

GAS Series Mechanical Structure Introduction

GAS Series Design Advantages

Apply the innovative extra-thin stage module

The unique module structure of equipping the MINI STAGE XY0 sliding units and special cross-roller bearing four ends located between the base and bench.

Many sizes for selection

Size from 100x100mm to 1500x1500mm.

Hollow structure

Used for the optical inspection devices or conduction tester.

Light-weight and extra-thi

It creates the wing-free thin & lighter by applying the XYθ module.

High rigidity & precision

Pre-load to the special cross-roller bearing.

GAS Series Coding Method

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.linearingeleiding.nl

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.linearregeleiding.nl

X2-axis

X2-axis

GMT GAS01, GAS02, GAS03 Series Mechanical Functioning

The model GAS01, 02, 03 series alignment stage applies the combination of axle-X1, X2 & Y movements as graphically displayed in the following picture, which can perform various stage operations. (The green is the changed locations.)

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.linearingeleiding.nl

X2-axis

X2-axis

- * The ambient temperature is lower than 0°C or over 40°C range, the RH is above 85%, or there is any condensate, corrosive gas or inflammable/combustible gas generated.
- * The area with Fe or other medium powders, dust, oil mist, cutting fluid, water, salt or organic-solventsplashing condition.
- is the place under direct sunbeam or radiation heat. ✤
- * The place with intense E/M field.
- * The place under vibration or shocks.

6

GAS0M, GAS00 Feeding Calculation Formula

The equation of calculating the respective feeding at any X-, Y-, or θ -axis.

X1-axis: $\delta x = tan\theta x (Y-X1y) + X1x X (-1 + 1/cos\theta) + X$ X2-axis: $\delta x = tan\theta x (Y-X2y) + X2x X (-1 + 1/cos\theta) + X$

Y-axis: $\delta Y = \tan\theta x (Y-X1y) + X1x X (-1 + 1/\cos\theta) + X$

 δx_1 : X1-axle relative feeding [mm]

 δx^2 : X2-axle relative feeding [mm]]

 δY : Y-axle relative feeding [mm]

Feeding of ball-screw

 $X_{1x} \times X_{1y}$: The center-coordinate drives crossed rolling spindle turning round for X1-axis. (refer to the parameter table)

X2x \cdot X2y: The center-coordinate drives crossed rolling spindle turning round for X2-axis (refer to the parameter table)

 $Yx \cdot Yy$: The center-coordinate drives crossed rolling spindle turning round for Y-axis (refer to the parameter table)

X: X-direction movement amount

- Y: Y-direction movement amount
- θ : θ -direction movement amount

Parameter table

Туре		R	θΥ	θΧ1	θΧ2		
GAS0M	125	$\sqrt{90.5^2} + \sqrt{50^2}$	151.08°	118.92	241.08		
C A 500	160	<u>66</u> √ [−] 2	221.53	131.53	311.53		
GAS00	200	$\sqrt{82^2}$ + $\sqrt{136^2}$	148.91	121.09	238.91		

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.lineariregeleiding.nl

GAS01, GAS02, GAS03 Feeding Calculation Formula

The calculating equation of the respective feeding at any axis of any working bench. in order to figure out the rotary angle $\delta \theta$ X1-axis: $\delta x_1 = R \cos(\delta \theta + \theta X_1 + \theta 0) - R \cos(\theta X_1 + \theta 0)$ X2-axis: $\delta x^2 = R \cos(\delta \theta + \theta X^2 + \theta \theta) - R \cos(\theta X^2 + \theta \theta)$ Y-axis: $\delta Y = R \sin(\delta \theta + \theta Y + \theta 0) - R \sin(\theta Y + \theta 0)$ δx1: X1-axle relative feeding amount [mm] δx2: X2-axle relative feeding amount [mm] ➤ Feeding of ball-screw δY : Y-axle relative feeding amount [mm] $X1x \cdot X1y$: The angle position links to center of crossed-roller bearing on X1-axis. [°] (refer to the parameter table) X2x \cdot X2y: The angle position links to center of crossed-roller bearing on X2-axis. [°] (refer to the parameter table) $Yx \cdot YY$: The angle position links to center of crossed-roller bearing on Y-axis. [°] (refer to the parameter table) θ 0: The working bench angle calculated before movement. $\delta \theta$: Rotary angle of any working bench R:The radius produced from the supposed circle connected axis. by the bearing center of crossed-roller on each. Symbol interpreting diagram for the formula δΧ X1 axis ٠X δY

next position

now position

first position

Parameter table

Туре		R	θY	θΧ1	θΧ2						
GA 901	250	90	٥°	٥٥°	270°						
GASUT	350	135	U	90							
	400	145 √ [−] 2									
GAS02	500	195√2									
	750	320√2	45°	135°	225°						
CA802	1000	400√2									
GAS03	1500	650√ [−] 2									

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.lineariregeleiding.nl

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl

(+ 5.47210)

(+ 4.73779)

(+ 0.5)

(0)

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

GMT

Cryogenic Treatment

All of GMT series of products are Cryogenic Treatment

The Cryogenic Treatment is a technology that freezes parts in a subzero temperature at -196°C,

which will change material's physic properties under certain processes. The study reports show that the cryogenic treatment not only can significantly upgrade the toughness and operation lifetime of non-ferrite metals, plastics and ceramic materials, it also will improve the dimension stability of materials The cryogenic treatment thus builds a great vision and enormous economic effect in the aviation & space, optic, biological, chemical, mechanical, electronic and light industries.

Purpose of cryogenic treatment:

Apply the subzero-temperature cooling process to improve the physic (mechanical) properties of metals or other materials; it can effectively improve the operation lifetime, quality and efficiency of work pieces or parts

Example: aluminum alloy - metallographic phase comparise

1.Metallographic-phase chart analysis before cryogenic treatment 2.Metallographic-phase chart analysis after cryogenic treatment

•Effectiveness analysis of aluminum alloy after cryogenic treatment:

After the cryogenic treatment it can improve:

(1) the deforming issue of structural stress made from the shape design of parts during or after machining process;(2) and effectively restrains the aging deformation made later;

(3) The mechanical property test result shows that the mechanical strength is apparently improved,

which perfectly demonstrates the mechanical properties of material as per the designed ones.

Practical application: after solution zing the aluminum alloy AL7075 (Duralumin),

if we perform the cryogenic treatment and fast thaw the aluminum alloy; except boosting the aging ef it will improve the material's mechanical properties in return.

Experiment data shows that after performing the cryogenic treatment,

aluminum casting will improve its machine-ability in response.

Objective parts	Hardness	Wear ability	Cutting lifetime	Dimension is stable	Other
Drill, Cutting tool, Cutter	+	+	+	+	One tempering cycle is sufficient
Shear-cut mold, Press mold, Shear-cutter, Rolling	+	+	+	+	Grind-crack prevention
Aluminum-extruding mold	+	+			
Slide, Roller	+	+		+	
Axis, Gear, Sleeve, Cam	+	+		+	Grind-crack prevention
Austenitic organization (Series 300) Martens tic organization (420J2,440) Precipitated organization (630,631)	+ + +	+ + +	+	+ + +	Improve the anti-corrosion capability Improve the anti-corrosion capability Improve the anti-erosion capability
Type 18%Ni Type 25%Ni	+++	+++++		+ +	Boost the aging effect Boost the aging effect
Cutting tool, Rolling, Vehicle parts		+	+	+	Remove the residual stress
Electrode, Flame nozzle		+		+	
Automatic mechanical parts, Precise machining, Mold production, Precise electronic instrument, SMT, PCB soldering carrier		+		t	Improve the cut force

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.almotion.nl | www.linearmotion.nl | www.lineariregeleiding.nl

Cross-Roller Loading Ability

	Upward/downward load (1)	Lateral load
Load condition	Load	Load
Basic dynamic load rating C N	$C_r = \left\{ \left(\frac{Z}{2} - 1\right) 2p \right\}^{1/36} \left(\frac{Z}{2}\right)^{3/4} C_U \cdots$ (1)	$C_{a} = \left\{ \left(\frac{Z}{2} - 1 \right) 2p \right\}^{1/36} \left(\frac{Z}{2} \right)^{3/4} 2^{7/9} C_{U} \cdots (4)$
Basic static load rating Co N	$C_{0r} = \left(\frac{Z}{2}\right) C_{0U} \cdots (2)$	$C_{0a} = 2\left(\frac{Z}{2}\right)C_{0U} \cdots (5)$
Allowable load F N	$F_r = \left(\frac{Z}{2}\right) F_U$ (3)	$F_a = 2\left(\frac{Z}{2}\right)F_U \cdots (6)$

11

Quick Menu

											Туре
Ctore distance	Module	e drives	Central	loading			Module driv	ves Modu	Ile loading		
Stage-distance	GAS0M		GAS00		GAS01		GAS02			GAS03	
Table Module	100	125	160	200	250	350	400	500	750	1000	1500
GAU-0M	GAS0M -100										
GAU-03-125		GAS0M -125									
GAU-03-160			GAS00 -160								
GAU-03-200				GAS00 -200							
GAU-05DH					GAS01						
GAU-05H					-250CH						
GAU-05D1					GAS01						
GAU-05S					-250C						
GAU-06D1						GAS01					
GAU-06S						-350C					
GAU-10D1							GAS02	GAS02	GAS03		
GAU-10S							-400C	-500C	-750C		
GAU-12D1										GAS03	GAS03
GAU-12S										-1000C	-1500C
GAU-C01											
GAU-C02											
Other	GAS0M -100S				GAS01 -250S	GAS01 -350S	GAS02 -400S	GAS02 -500S	GAS02 -750S	GAS03 -1000S	GAS03 -1500S
Instruction											

G/	AS
С	Center drives
S	Side drives
н	Heavy-load type

GAS Material							
Aluminum alloy 6061	250~400 anode						
Aluminum alloy 7075	500~750 anode						
Steel S-45	Low-temp black-Chrome						
	(foggy surface)/chemical						
	nickel plating						

GAU							
D	Old-type support unit						
D1	Improved support unit						
S	Driven module						
н	Heavy-load type						

aractoristic

										onaraoi	Chothod		
			GAS	SOM	GA	S00	GAS	601-C	GAS02-C			GAS03-C	
Mod	lule	Table	100	125	160	200	250	350	400	500	750	1000	1500
B	ench size	mm	100x100	125x125	160x160	200x200	250x250	350x350	400x400	500x500	750x750	1000x1000	1500x1500
B	ase size	mm	120x120	260x260	170x170	350x350	350x350	450x450	500x500	600x600	850x850	1200x1200	1700x1700
T	ravel	mm	±2x±2x±2 °	±3×±3×±3°	±3×±3×±3°	±5×±5×±3°	±5×±5×±3°	±5×±5×±2°	±10x±10x±3.5°	±10×±10×±2.5°	±10×±10×±1.5°	±15×±15×±2°	±15×±15×±1°
Н	eight	mm	35	60	45	60	90	90	110	110	110	160	160
P	arallelism	um	15	30	30	30	30	40	50	80	180	300	700
Lc	bading capacity F	Kgf	4.8	40.6	18.6	56.8	50.9	50.9	97.5	97.5	97.5	219.5	439
Lc	bading capacity F	: Kgf	9.6	81.2	37.2	113.6	101.8	101.8	195	195	195	439	878
M	laterial		S45C	S45C	S45C	S45C	6061T651	6061T651	7075T651	7075T651	7075T651	S50C	S50C
S	urface treatme	nt	Low-temp black-	Low-temp black-	Low-temp black-	Low-temp black-Chrome	Black anode	Black anode	Black anode	Black anode	Black anode	Cr-plated (black)	Cr-plated (black)
lass	Ball screw lead	mm	1	1	1	1	1	1	2	2	2	4	4
Ч Ч	Positioning repeatability accuracy	um	±1	±0.7	±0.7	±0.7	±1	±1	±1	±1	±1	±1	±1
ass	Ball screw lead	mm	1	1	1	1	1	1	2	2	2	4	4
Z-cl	Positioning repeatability accuracy	um	±2.5	±1.75	±1.75	±1.75	±2.5	±2.5	±2.5	±2.5	±2.5	±2.5	±2.5
_	Motor		2MS-N20U33A	2MS-N20U33A	TS3664N16E2	2MS-N28U45A	2MS-N42U47A /Servo	2MS-N42U47A /Servo	2MS-N42U47A /Servo	2MS-N42U47A /Servo	Servo	Servo	Servo
Motol	Driver		DS2-022A Micro-stepping driver	DS2-022A Micro-stepping driver	TAMAGAWA SEIKI	DS2-022A Micro-stepping driver	DS2-022A Micro-stepping driver	DS2-022A Micro-stepping driver	DS2-022A Micro-stepping driver	DS2-022A Micro-stepping driver	Driver	Driver	Driver
	Limit Sensor		SA0301	SA0301	2K127	2K127	EE-SX672	EE-SX672	EE-SX672	EE-SX672	EE-SX672	EE-SX672	EE-SX672
B	ody weight	Kg	2	15	6	35	18	23	37	44	63	600	1150

 Almotion B.V.
 Nijverheidsweg
 14
 6662
 NG
 Elst (Gld)
 The Netherlands
 t +31 (0)85 0491 777
 e info@almotion.nl

 www.almotion.nl
 www.linearmotion.nl
 www.lineairegeleiding.nl

Central Loading GAS0M Series

 Almotion B.V.
 Nijverheidsweg
 14
 6662
 NG
 Elst (Gld)
 The Netherlands
 t +31 (0)85 0491 777
 e info@almotion.nl

 www.almotion.nl
 www.linearmotion.nl
 www.lineairegeleiding.nl

Central Loading GAS00 Series

ALMOTION

Central Loading GA S00 Series

ALMOTION

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

 Almotion B.V.
 Nijverheidsweg
 14
 6662
 NG
 Elst (Gld)
 The Netherlands
 t +31 (0)85
 0491
 777
 e info@almotion.nl

 www.almotion.nl
 www.linearmotion.nl
 www.linearregeleiding.nl