LM Guide THK General Catalog

Product Descriptions

Classification Table of the LM Guides ...
1-8

Point of Selection	A1-10
Flowchart for Selecting an LM Guide	A1-10
Setting Conditions	A1-12
Conditions of the LM Guide	A1-12
Selecting a Type	A 1-28
Types of LM Guides	A 1-28
Calculating the Applied Load	A 1-40
Calculating an Applied Load	A1-40
Calculating the Equivalent Load	A1-57
• Rated Load of an LM Guide in Each Direction	A1-57
Calculating the Static Safety Factor	A 1-61
Calculating the Average Load	A 1-62
Calculating the Nominal Life	A 1-64
Calculating the Nominal Life	A 1-64
Calculating the Nominal Life Accounting for Usage Conditions	A 1-65
Predicting the Rigidity	A 1-68
 Selecting a Radial Clearance (Preload) 	A 1-68
 Service Life with a Preload Considered 	A 1-69
Rigidity	A 1-69
Radial Clearance Standard for Each Model	A1-70
Determining the Accuracy	A 1-73
Accuracy Standards	A1-73
 Guidelines for Accuracy Grades by Machine Type 	A 1-74
Accuracy Standard for Each Model	A1-75
Features and Dimensions of Each Model	A 1-87
Structure and Features of the Caged Ball LM Guide	A1-88
Advantages of the Ball Cage Technology	A 1-89
Caged Ball LM Guide Global Standard Size Model SHS	A1-92
Structure and Features	A 1-93
Types and Features	A 1-94

ALMOTION

512E'

ᆱᄣ

Classification Table of the LM Guides

A1-8

Features and Types

Classification Table of the LM Guides

512E'

Point of Selection

LM Guide

Flowchart for Selecting an LM Guide

[Steps for Selecting an LM Guide]

The following flowchart can be used as reference for selecting an LM Guide.

Flowchart for Selecting an LM Guide

- · Space in the guide section
- · Dimensions (span, number of LM blocks, number of LM rails, thrust)
- · Installation direction (horizontal, vertical, slant mount, wall mount, suspended)
- · Magnitude, direction and position of the working load
- Operating frequency (duty cycle)
- Speed (acceleration)
- · Stroke length
- ·Required service life
- Precision of motion
- Environment
- In a special environment (vacuum, clean room, high temperature, environment exposed to contaminated environment, etc.), it is necessary to take into account material, surface treatment, lubrication and contamination protection.

↓	↓
Prediction the Rigidity	Determining the Accuracy
Selecting a Radial Clearance (Preload) A1-68	Accuracy Standards
2 Service Life with a Preload Considered A1-69	2 Guidelines for Accuracy Grades A1-74
3 Rigidity	3 Accuracy Standard for Each Model
4 Radial Clearance Standard for Each Model	
5 Designing the Guide System	

Setting Conditions

Conditions of the LM Guide

[Mounting Orientation]

The LM Guide can be mounted in the following five orientations.

If the mounting orientation of the LM Guide is other than horizontal use, the lubricant may not reach the raceway completely.

Be sure to let THK know the mounting orientation and the exact position in each LM block where the grease nipple or the piping joint should be attached.

For the lubrication, see **24-2**.

[Mounting Orientation]

Point of Selection

Setting Conditions

[Symbol for Number of Axes]

If two or more units of the LM Guide are parallelly used in combination on the same plane, specify the number of the LM rails (symbol for number of axes) used in combination in advance. (For accuracy standards and radial clearance standards, see **A1-75** and **A1-70**,

- **Π**

respectively.)

Model number coding SHS25C2SSCO+1000LP

Model number (details are given on the corresponding page of the model)

Symbol for number of axes ("II" indicates 2 axes. No symbol for a single axis)

[Symbol for Number of Axes]

Symbol for number of axes: none	Symbol for number of axes: ${\mathbb I}$	Symbol for number of axes: ${\mathbb I}$
Required number of axes: 1	Required number of axes: 2	Required number of axes: 2
Symbol for number of axes: ${\rm I\!I}$	Symbol for number of axes: $\ensuremath{\mathbb{N}}$	Other
Note: When placing an order, specify the number in multiple of 3 axes.	Note: When placing an order, specify the number in multiple of 4 axes.	Kequired number of axes: 2

512E'

[Service environment]

• Lubrication

When using an LM system, it is necessary to provide effective lubrication. Without lubrication, the rolling elements or the raceway may be worn faster and the service life may be shortened.

A lubricant has effects such as the following.

- (1) Minimizes friction in moving elements to prevent seizure and reduce wear.
- (2) Forms an oil film on the raceway to decrease stress acting on the surface and extend rolling fatigue life.
- (3) Covers the metal surface to prevent rust formation.

To fully bring out the LM Guide's functions, it is necessary to provide lubrication according to the conditions.

If the mounting orientation is other than horizontal use, the lubricant may not reach the raceway completely.

Be sure to let THK know the mounting orientation and the exact position in each LM block where the grease nipple or the piping joint should be attached. For the mounting orientations of LM Guides, see **M1-12**. For the lubrication, see **M24-2**.

Even with an LM Guide with seals, the internal lubricant gradually seeps out during operation. Therefore, the system needs to be lubricated at an appropriate interval according to the service conditions.

Corrosion Prevention

Determining a Material

Any LM system requires a material that meets the environments. For use in environments where corrosion resistance is required, some LM system models can use martensite stainless steel.

(Martensite stainless steel can be used for LM Guide models SSR, SHW, SRS, HSR, SR, HRW, RSR and HR.)

The HSR series includes HSR-M2, a highly corrosion resistant LM Guide using austenite stainless steel, which has high anti-corrosive effect. For details, see **I-372**.

Surface Treatment

The surfaces of the rails and shafts of LM systems can be treated for anti-corrosive or aesthetic purposes.

THK offers THK-AP treatment, which is the optimum surface treatment for LM systems.

There are roughly three types of THK-AP treatment: AP-HC, AP-C and AP-CF. (See **B0-20**.)

Point of Selection

Setting Conditions

Contamination Protection

When foreign material enters an LM system, it will cause abnormal wear or shorten the service life, and it is necessary to prevent foreign material from entering the system. When entrance of foreign material is predicted, it is important to select an effective sealing device or dust-control device that meets the environment conditions.

THK offers contamination protection accessories for LM Guides by model number, such as end seals made of special synthetic rubber with high wear resistance, and side seals and inner seals for further increasing dust-prevention effect.

In addition, for locations with adverse environment, Laminated Contact Scraper LaCS and dedicated bellows are available by model number. Also, THK offers dedicated caps for LM rail mounting holes, designed to prevent cutting chips from entering the LM rail mounting holes.

When it is required to provide contamination protection for a Ball Screw in an environment exposed to cutting chips and moisture, we recommend using a telescopic cover that protects the whole system or a large bellows.

For the options, see **1-464**.

512E'

[Special environments]

Clean Room

In a clean environment generation of dust from the LM system has to be reduced and anti-rust oil cannot be used. Therefore, it is necessary to increase the corrosion resistance of the LM system. In addition, depending on the level of cleanliness, a dust collector is required.

Dust Generation from the LM System

Measure to Prevent Dust Generation Resulting from Flying Grease

THK AFE-CA and AFF Grease

Use environmentally clean grease that produces little dust.

Measure to Reduce Dust Generation Resulting from Metallic Abrasion Dust

Caged Ball LM Guide

Use the Caged Ball LM Guide, which has no friction between balls and generates little metallic abrasion dust, to allow generation of dust to be minimized.

Corrosion Prevention

Material-based Measure

Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has corrosion resistant effect.

Highly Corrosion Resistant LM Guide

It uses austenite stainless steel, which has a high corrosion resistant effect, in its LM rail.

Measure Through Surface Treatment

THK AP-HC, AP-C and AP-CF Treatment

The LM system is surface treated to increase corrosion resistance.

Caged Ball LM Guide

pported SHS SSR SVR/SVS SHW SRS SCR EPF

Caged Roller LM Guide

Stainless Steel LM Guide

SSR SHW SRS HSR SR HRW HR RSR

LM Guides for Special Environment

High Corrosion Resistance HSR-M2

Surface Treatment

Grease

Point of Selection

Setting Conditions

Vacuum

In a vacuum environment, measures are required to prevent gas from being emitted from a resin and the scattering of grease. Anti-rust oil cannot be used, therefore, it is necessary to select a product with high corrosion resistance.

Measure to Prevent Emission of Gas from Resin Stainless Steel LM Guide

The endplate (ball circulation path normally made of resin) of the LM block is made of stainless steel to reduce emission of gas.

Measure to Prevent Grease from Evaporating

Vacuum Grease

If a general-purpose grease is used in a vacuum environment, oil contained in the grease evaporates and the grease looses lubricity. Therefore, use a vacuum grease that uses fluorine based oil, whose vapor pressure is low, as the base oil.

Corrosion Prevention

Stainless Steel LM Guide

In a vacuum environment, use a stainless steel LM Guide, which is highly corrosion resistant.

High Temperature LM Guide

If high temperature is predicted due to baking, use a High Temperature LM Guide, which is highly resistant to heat and corrosion.

Highly Corrosion Resistant LM Guide

This LM Guide uses austenite stainless steel, which has a high anti-corrosion effect, in the LM rail.

Oil-Free

In environments susceptible to liquid lubricants, a lubrication method other than grease or oil is required.

Dry Lubricant

Dry Lubrication S-Compound Film

Dry Lubrication S-Compound Film is a fully dry lubricant developed for use under atmospheric to high-vacuum environments. It has superior characteristics in load carrying capacity, wear resistance and sealability to other lubrication systems.

High Temperature LM Guide

HSR-M1 SR-M1 RSR-M1

LM Guides for Special Environment

For Medium-to-Low Vacuum HSR-M1VV OII-Free SR-MS

Highly Corrosion Resistant LM Guide

Stainless Steel LM Guide

Vacuum Grease

Oil-Free LM Guide

Point of Selection

Setting Conditions

Corrosion Prevention

As with clean room applications, it is necessary to increase corrosion resistance through material selection and surface treatment.

Material-based Measure

Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has an anti-corrosion effect.

Highly Corrosion Resistant LM Guide

It uses austenite stainless steel, which has a high anti-corrosion effect, in its LM rail.

Measure Through Surface Treatment

THK AP-HC, AP-C and AP-CF Treatment The LM system is surface treated to increase corrosion resistance.

Stainless Steel LM Guide

SSR SHW SRS HSR SR HRW HR RSR

Highly Corrosion Resistant LM Guide

Surface Treatment

Point of Selection

Setting Conditions

High Speed

In a high speed environment, it is necessary to apply an optimum lubrication method that reduces heat generation during high speed operation and increases grease retention.

Measures to Reduce Heat Generation

Caged Ball LM Guide

Use of a ball cage eliminates friction between balls to reduce heat generation. In addition, grease retention is increased, thus to achieve long service life and high speed operation.

THK AFA Grease, AFJ Grease

It reduces heat generation in high speed operation and has superb lubricity.

Measure to Improve Lubrication

QZ Lubricator

Continuous oil lubrication ensures that the lubrication and maintenance interval can significantly be extended. It also applies the right amount of oil to the raceway, making itself an eco-friendly lubrication system that does not contaminate the surrounding area.

Point of Selection

Setting Conditions

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.linearmotion.nl | www.linearregeleiding.nl

LM Guide

512E'

A1-23

High Temperature

In a high temperature environment, dimensional alterations caused by heat is problematic. Use a High Temperature LM Guide, which is heat resistant and has minimal dimensional alterations after being heated. Also, use a high temperature grease.

Heat Resistance

High Temperature LM Guide

A special heat treatment to maintain dimensional stability minimizes dimensional variations due to heating and cooling.

Grease

High Temperature Grease

Use a high temperature grease with which the rolling resistance of the LM system is consistent even at high temperature.

Low Temperature

In a low temperature environment, use an LM system with a minimal amount of resin components and a grease that minimize fluctuations in rolling resistance, even at low temperature.

Impact of Low Temperature on Resin Components

Stainless Steel LM Guide

The endplate (ball circulation path normally made of resin) of the LM block is made of stainless steel.

Corrosion Prevention

Provide surface treatment to the LM system to increase its corrosion resistance.

Grease

Use THK AFC Grease, with which the rolling resistance of the system little is consistent even at low temperature.

Micro Motion

Micro strokes cause the oil film to break, resulting in poor lubrication and early wear. In such cases, select a grease with which the oil film strength is high and an oil film can easily be formed.

Grease

THK AFC Grease

AFC Grease is a urea-based grease that excels in oil film strength and wear resistance.

High Temperature LM Guide

High Temperature Grease

Stainless Steel LM Guide

SSR SHW SRS HSR SR HRW HR RSR

Surface Treatment

Low Temperature Grease

Grease

Point of Selection

Setting Conditions

Foreign Matter

If foreign matter enters the LM system, it will cause abnormal wear and shorten the service life. Therefore, it is necessary to prevent such entrance of foreign matter.

Especially in an environment containing small foreign matter or a water-soluble coolant that a telescopic cover or a bellows cannot remove, it is necessary to attach a contamination protection accessory capable of efficiently removing foreign matter.

Metal Scraper

It is used to remove relatively large foreign objects such as cutting chips, spatter and sand or hard foreign matter that adhere to the LM rail.

Laminated Contact Scraper LaCS

Unlike a metal scraper, it removes foreign matter while it is in contact with the LM rail. Therefore, it demonstrates a high contamination protection effect against small foreign matter, which has been difficult to remove with conventional metal scrapers.

QZ Lubricator

QZ Lubricator is a lubrication system that feeds the right amount of lubricant by closely contacting its highly oil-impregnated fiber net to the ball raceway.

Metal Cap Dedicated for LM Rail Mounting Holes GC Cap

GC cap is a metallic cap that plugs the LM rail mounting hole (article compliant with the RoHS Directives). It prevents the entrance of foreign material and coolant from the LM rail top face (mounting hole) under harsh environments, and significantly increases the dust control performance of the LM Guide if used with a dust control seal.

Protector

The protector minimizes the entrance of foreign material even in harsh environments where foreign material such as fine particles and liquids are present.

LM Guide

- +Metal scraper
- +Contact scraper LaCS
- +Cap GC, etc.

Caged Roller LM Guide +Metal scraper +Contact scraper LaCS +Cap GC, etc.

Point of Selection

Setting Conditions

Selecting a Type

Types of LM Guides

THK offers a wide array of types and dimensions with LM Guides as standard so that you can select the optimal product for any application. With the unit structure of each model, you can easily obtain high running accuracy with no clearance simply by mounting the product on a plane surface with bolts. We have a proven track record and know-how in extensive applications with LM Guides.

				Specification	Load	Basic load rating (kN)		
	Classification	Туре		Table	capacity diagram	Basic dynamic load rating	Basic static load rating	
			SSR-XW	▶⊠1-108		14.7 to 64.6	16.5 to 71.6	
	Caged Ball LM Guide	التحتا	SSR-XV	▶⊠1-110		9.1 to 21.7	9.7 to 22.5	
		N.S.	SSR-XTB	▶⊠1-112		14.7 to 31.5	16.5 to 36.4	
			SR-W	▶⊠1-212		13.8 to 411	20.5 to 537	
			SR-M1W	▶⊠1-356		13.8 to 60.4	20.5 to 81.8	
		لتحتال ا	SR-V	▶⊠1-212	Ŧ	9.1 to 40.9	11.7 to 46.7	
	Full-Complement		SR-M1V	▶⊠1-356	→☆←	9.1 to 40.9	11.7 to 46.7	
	Ball LM Guides	Nu	SR-TB	▶⊠1-214	1	13.8 to 136	20.5 to 179	
			SR-M1TB	▶⊠1-358		13.8 to 60.4	20.5 to 81.8	
ø			SR-SB	▶⊠1-214		9.1 to 40.9	11.7 to 46.7	
ial typ			SR-M1SB	▶⊠1-358		9.1 to 40.9	11.7 to 46.7	
Rad	Oil-Free LM Guides		SR-MSV	▶⊠1-390		_	—	
	ments	لتحتال	SR-MSW	▶⊠1-390		—	—	
		ſJ	SVR-C	▶⊠1-126		48 to 260	68 to 328	
		1 - M	SVR-LC	▶⊠1-126		57 to 340	86 to 481	
			SVR-R	▶⊠1-122		48 to 260	68 to 328	
	Caged Ball LM Guides		SVR-LR	▶⊠1-122	Ŧ	57 to 340	86 to 481	
	for Machine Tools high-rigidity model		SVR-CH	▶⊠1-132	→□←	90 to 177	115 to 238	
	for ultra-neavy loads	N. C.	SVR-LCH	▶⊠1-132		108 to 214	159 to 312	
			SVR-RH	▶⊠1-130		90 to 177	115 to 238	
		الألما	SVR-LRH	▶⊠1-130		108 to 214	159 to 312	

512E′

External dime	ensions (mm)				
Height	Width	Features	Major application		
24 to 48	34 to 70	Long service life, long-term maintenance-free operation Thin, compact design, large radial load capacity	Surface grinder tableTool grinder table		
24 to 33	34 to 48	 Low dust generation, low noise, Superb in planar running accuracy acceptable running sound Superb ing mounting error 	 Electric discharge machine Printed circuit board drilling machine 		
24 to 33	52 to 73	Smooth motion in all mounting orientations Stainless steel type also available as standard	 Chip mounter High-speed transfer 		
24 to 135	34 to 250		 Traveling unit of robots Machining center 		
24 to 48	34 to 70		 NC lathe Five axis milling machine 		
24 to 48	34 to 70	Thin compact design large radial load capacity	 Conveyance system Mold guide of pressing machines 		
24 to 48	34 to 70	 Superb in planar running accuracy Superb capability of absorbing mounting error 	 Inspection equipment Testing machine Food related machine 		
24 to 68	52 to 140	 Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available 	 Medical equipment 3D measuring instrument 		
24 to 48	52 to 100		 Packaging machine Injection molding machine Woodworking machine 		
24 to 48	52 to 100		 Ultra precision table Semiconductor/liquid 		
24 to 48	52 to 100		crystal manufacturing equipment		
24 to 28	34 to 42	Minimum generation of outgases (water, organic matter) Small amount of particles generated	Photolithography machineOrganic EL display		
24 to 28	34 to 42	 Can be used at high temperature (up to 150°C) 	 Ion implantation equipment 		
31 to 75	72 to 170	Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound	 Machining center 		
31 to 75	72 to 170	 Superbly high speed Smooth motion in all mounting orientations Ultra-breavy load capacity optimal for machine tools 	NC lathe Grinding machine Eivo axis milling		
31 to 75	50 to 126	 Thin, compact design, large radial load capacity High vibration resistance and impact resistance due to 	 Five axis mining machine Jig borer 		
31 to 75	50 to 126	improved damping characteristicsSuperb in planar running accuracy	Drilling machine NC milling machine Horizontal milling		
48 to 70	100 to 140	Long service life, long-term High vibration resistance and impact resistance low disc deparation low noise due to improved damping	Mold processing		
48 to 70	100 to 140	Superbly high speed Smooth motion in all mount- Smooth motion in all mount-	 Graphite working machine 		
55 to 80	70 to 100	Ultra-heavy load capacity optimal for machine tools Has dimensions almost the same as that of the full-ball type LM Guide medel HSP	 Electric discharge machine Wire-cut electric 		
55 to 80	70 to 100	Large radial load capacity which is practically a global standard size	discharge machine		

Classification		Туре		Specification	Load	Basic load rating (kN)		
				Table	capacity diagram	Basic dynamic load rating	Basic static load rating	
			NR-RX	▶⊠1-224		37.1 to 208.7	68.1 to 351.7	
			NR-LRX	▶⊠1-224		45.4 to 268.9	90.8 to 505.5	
			NR-CX	▶⊠1-228		37.1 to 208.7	68.1 to 351.7	
		" - M	NR-LCX	▶⊠1-228	_	45.4 to 268.9	90.8 to 505.5	
I type	Ball LM Guides	n († – – – –	NR-R	▶⊠1-224		271 to 479	610 to 1040	
Radia	high-rigidity model		NR-LR	▶⊠1-224		355 to 599	800 to 1300	
			NR-A	▶⊠1-232	-	271 to 479	610 to 1040	
		Urdr	NR-LA	▶⊠1-232		355 to 599	800 to 1300	
		£	NR-B	▶⊠1-234		271 to 479	610 to 1040	
		تصالا	NR-LB	▶⊠1-234		355 to 599	800 to 1300	
			SVS-R	▶⊠1-124		37 to 199	52 to 251	
			SVS-LR	▶⊠1-124	↓ →°`←	44 to 261	66 to 368	
		<u>ra</u> hj	SVS-C	▶⊠1-128		37 to 199	52 to 251	
	LM Guides for Machine Tools		SVS-LC	▶⊠1-128		44 to 261	66 to 368	
	high-rigidity model for ultra-heavy loads	1	SVS-RH	▶⊠1-130		69 to 136	88 to 182	
/ type			SVS-LRH	▶⊠1-130		83 to 164	122 to 239	
4-way			SVS-CH	▶⊠1-132		69 to 136	88 to 182	
		N-D-1	SVS-LCH	▶⊠1-132	-	83 to 164	122 to 239	
	Full Complement	J.	NRS-CX	▶⊠1-230		28.4 to 159.8	52.2 to 269.4	
	Ball LM Guides	i - M	NRS-LCX	▶⊠1-230		34.7 to 206	69.6 to 387.2	
	high-rigidity model		NRS-RX	▶⊠1-226		28.4 to 159.8	52.2 to 269.4	
			NRS-LRX	▶⊠1-226		34.7 to 206	69.6 to 387.2	
			NRS-A	▶⊠1-232		212 to 376	431 to 737	
d type	Full Complement	Utor	NRS-LA	▶⊠1-232	_	278 to 470	566 to 920	
al load	Ball LM Guides		NRS-B	▶⊠1-234	↓	212 to 376	431 to 737	
/ ední	high-rigidity model		NRS-LB	▶⊠1-234	→ ←	278 to 470	566 to 920	
4-wa)			NRS-R	▶⊠1-226	-	212 to 376	431 to 737	
			NRS-LR	▶⊠1-226		278 to 470	566 to 920	

A1-30

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.lineairregeleiding.nl

Point of Selection

Selecting a Type

External dime	ensions (mm)					
Height	Width	Features	Major application			
31 to 75	50 to 126	Low dust generation, low noise, acceptable running sound Superbly bids speed				
31 to 75	50 to 126	 Smooth motion in all mounting orientations Ultra-heavy load capacity optimal for machine tools 				
31 to 75	72 to 170	 Thin, compact design, large radial load capacity High vibration resistance and impact resistance due to improve damping characteristics 				
31 to 75	72 to 170	Superb in planar running accuracy				
83 to 105	145 to 200					
83 to 105	145 to 200					
83 to 105	195 to 260	 Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to improve damping obsractigations 				
83 to 105	195 to 260	 Thin, compact design, large radial load capacity Superb in planar running accuracy 				
83 to 105	195 to 260					
83 to 105	195 to 260					
31 to 75	50 to 126	• Long service life, long-term maintenance-free operation	Machining center			
31 to 75	50 to 126	Superbly high speed Smooth motion in all mounting orientations	 NC lathe Grinding machine Five axis milling 			
31 to 75	72 to 170	 Ultra-heavy load capacity optimal for machine tools Low profile, compact 4-way type High vibration resistance and impact resistance due to impact the second se	machine Jig borer Infiling machine NC milling machine Horizontal milling machine Mold processing Mold processing			
31 to 75	72 to 170	proved damping characteristics				
55 to 80	70 to 100	Long service life, long-term • 4-way type maintenance free operation • High vibration resistance and				
55 to 80	70 to 100	Low dust generation, low noise, acceptable running sound proved damping characteristics machine	Graphite working machine			
48 to 70	100 to 140	Superbly high speed Mas dimensions almost the same as that of the full-ball type Illtra-heavy load capacity op-	Electric discharge machine Wire-cut electric			
48 to 70	100 to 140	timal for machine tools practically a global standard size	discharge machine			
31 to 75	72 to 170	Low dust generation, low noise, acceptable running sound				
31 to 75	72 to 170	Superbly high speed Smooth motion in all mounting orientations Ultra-heavy load capacity optimal for machine tools				
31 to 75	50 to 126	 Low profile, compact 4-way type High vibration resistance and impact resistance due to im- 				
31 to 75	50 to 126	proved damping characteristics				
83 to 105	195 to 260					
83 to 105	195 to 260					
83 to 105	195 to 260	 Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to im- 				
83 to 105	195 to 260	proved damping characteristicsLow-Profile compact design, 4-way equal load				
83 to 105	145 to 200					
83 to 105	145 to 200					

512E′

			_	Specification	Load	Basic load rating (kN)		
	Classification	Туре		Table	capacity diagram	Basic dynamic load rating	Basic static load rating	
		V	SRG-A, C	▶⊠1-404		11.3 to 131	25.8 to 266	
		ณ์ยะ/	SRG-LA, LC	▶⊠1-404		26.7 to 278	63.8 to 599	
			SRG-R, V	▶⊠1-410		11.3 to 131	25.8 to 266	
	Caged Roller		SRG-LR, LV	▶⊠1-410	L	26.7 to 601	63.8 to 1170	
	LM Guide - super ultra-heavy-	Vian	SRN-C	▶⊠1-422	→ ± ←	59.1 to 131	119 to 266	
	types	NED	SRN-LC	▶⊠1-422	1	76 to 278	165 to 599	
			SRN-R	▶⊠1-424		59.1 to 131	119 to 266	
			SRN-LR	▶⊠1-424		76 to 278	165 to 599	
a)		U E	SRW-LR	▶⊠1-432		115 to 601	256 to 1170	
ual load type		N N N	SHS-C	▶⊠1-96	, ₽	14.2 to 205	24.2 to 320	
4-way eq			SHS-LC	▶⊠1-96		17.2 to 253	31.9 to 408	
	Caged Ball LM Guide -		SHS-V	▶⊠1-98		14.2 to 205	24.2 to 320	
	heavy-load, high rigidity types		SHS-LV	▶⊠1-98	1	17.2 to 253	31.9 to 408	
		لي التكار	SHS-R	▶⊠1-100		14.2 to 128	24.2 to 197	
			SHS-LR	▶⊠1-100		36.8 to 161	64.7 to 259	

Selecting a Type

External dime	ensions (mm)							
Height	Width		Features		Major application			
24 to 70	47 to 140							
30 to 120	63 to 250	•	Long service life, long-term maintenance-free operation Low noise, acceptable running sound	•	 Machining center NC lathe Crinding machine 			
24 to 80	34 to 100	•	Smooth motion due to prevention of rollers from skewing Ultra-heavy load capacity optimal for machine tools	•	Five axis milling machine		Z	
30 to 90	44 to 126			•	Jig borer Drilling machine		ר בי בי	
44 to 63	100 to 140			•	Horizontal milling machine	đ	Þ	
44 to 75	100 to 170	•	Long service life, long-term maintenance-free operation	•	Mold processing machine Graphite working			
44 to 63	70 to 100	•	Superbly high speed Smooth motion due to prevention of rollers from skewing		machine Electric discharge			
44 to 75	70 to 126	•	Ultra-heavy load capacity optimal for machine tools Low center of gravity, ultra-high rigidity	•	machine Wire-cut electric discharge machine			
70 to 150	135 to 300				disentarge machine			
24 to 90	47 to 170			•	Machining center NC lathe XYZ axes of heavy cutting machine tools Grinding head feeding			
24 to 90	47 to 170	 Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound Superby high speed Smooth motion in all mounting orientations 	axis of grinding machines Components requiring a heavy moment and high accuracy					
24 to 90	34 to 126		NC milling machine Horizontal milling machine Gantry five axis milling machine					
24 to 90	34 to 126	•	Heavy load, nigh rigidity Has dimensions almost the same as that of the full-ball type LM Guide model HSR, which is practically a global standard size Superb capability of absorbing mounting error	 Heady load, ingringidity Has dimensions almost the same as that of the full-ball type LM Guide model HSR, which is practically a global standard size Superb capability of absorbing mounting error Car elevata Food-relate Tessting ma Vehicle doc Printed circl ATC 		discharge machines Wire-cut electric discharge machine Car elevator Food-related machine		
28 to 80	34 to 100					Testing machine Vehicle doors Printed circuit board drilling machine ATC		
28 to 80	34 to 100			•	Construction equipment Shield machine Semiconductor/liquid crystal manufacturing equipment			

512E′

		T		Specification	Load	Basic load rating (kN)	
	Classification	Туре		Table	capacity diagram	Basic dynamic load rating	Basic static load rating
		Û	HSR-C/XC	▶⊠1-184		10.9 to 195	15.7 to 228
		۲œЙ	HSR-LC/XLC	▶⊠1-184		14.2 to 249	22.9 to 323
			HSR-A	▶⊠1-190		10.9 to 304	15.7 to 355
			HSR-M1A	▶⊠1-342		10.9 to 53.9	15.7 to 70.2
		Ĩ (d	HSR-LA	▶⊠1-190		23.9 to 367	35.8 to 464
		Utgji	HSR-M1LA	▶⊠1-342		23.9 to 65	35.8 to 91.7
			HSR-CA	▶⊠1-196		19.8 to 304	27.4 to 355
			HSR-HA	▶⊠1-196		23.9 to 518	35.8 to 728
	Full-Complement		HSR-B	▶⊠1-192		10.9 to 304	15.7 to 355
	Ball LM Guide - heavy-load, high		HSR-M1B	▶⊠1-344		10.9 to 53.9	15.7 to 70.2
	rigidity types		HSR-LB	▶⊠1-192		23.9 to 367	35.8 to 464
			HSR-M1LB	▶⊠1-344		23.9 to 65	35.8 to 91.7
be			HSR-CB	▶⊠1-198		19.8 to 304	27.4 to 355
ad ty			HSR-HB	▶⊠1-198		23.9 to 518	35.8 to 728
ual lo			HSR-R/XR	▶⊠1-188		1.08 to 304	2.16 to 355
ay eq			HSR-M1R	▶⊠1-346		10.9 to 53.9	15.7 to 70.2
4-W			HSR-LR/XLR	▶⊠1-188		23.9 to 367	35.8 to 464
			HSR-M1LR	▶⊠1-346		23.9 to 65	35.8 to 91.7
			HSR-HR	▶⊠1-200		441 to 518	540 to 728
	LM Guide for Medium-to-Low Vacuum		HSR-M1VV	▶⊠1-382		10.9	15.7
		Ĩ	HSR-YR	▶⊠1-194		10.9 to 195	15.7 to 228
	side mount types	<u></u>	HSR-M1YR	▶⊠1-348		10.9 to 53.9	15.7 to 70.2
		1tp	JR-A	▶⊠1-310		27.6 to 121	36.4 to 146
	Full-Complement LM Guides - special LM rail types	t <u>r</u> il	JR-B	▶⊠1-310	→ <u><u></u><u></u><u></u><u></u><u></u> ←</u>	27.6 to 121	36.4 to 146
	types	I	JR-R	▶⊠1-310	1	27.6 to 121	36.4 to 146

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t+31 (0)85 0491 777 e info@almotion.nl www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

Selecting a Type

External dime	ensions (mm)						
Height	Width		Features		Major application		
24 to 90	47 to 170						
24 to 90	47 to 170						
24 to 110	47 to 215			• Ma	chining center	LM	
24 to 48	47 to 100			• NC	Z axes of heavy cutting ma-	Gui	
30 to 110	63 to 215			 Gri 	ne tools inding head feeding axis	de	
30 to 48	63 to 100			ofg • Co	grinding machines mponents requiring a		
30 to 110	63 to 215			hea cur	avy moment and high ac- racy		
 30 to 145	63 to 350		Heavy load high rigidity	 NC Ho 	c milling machine rizontal milling machine		
24 to 110	47 to 215	•	Practically a global standard size Superb capability of absorbing mounting error	 Ga chi 	ntry five axis milling ma- ne		
24 to 48	47 to 100	•	Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available	• Za ma	axis of electric discharge ichines		
30 to 110	63 to 215	•	ype M2, with high corrosion resistance, also available Basic dynamic load rating: 2.33 to 5.57 kN) Wire-cut electric disc	re-cut electric discharge ichine			
30 to 48	63 to 100		(Basic static load rating: 2.03 to 5.16 kN)	 Ca For 	r elevator od-related machine		
30 to 110	63 to 215				Testing machine Vehicle doors		
30 to 145	63 to 350		 Printed machine ATC Construit 	• Pri	Printed circuit board drilling machine		
11 to 110	16 to 156			ATC Construction equipment			
28 to 55	34 to 70		Construction requipment Shield machine Shield machine		ield machine		
30 to 110	44 to 156			Semiconductor/liquid crystal manufacturing equipment			
30 to 55	44 to 70						
120 to 145	250 to 266						
28	34	•	Can be used in various environments at atmospheric pressure to vacuum $(10^3 [Pa])$ Allows baking temperature of 200°C* at a maximum If the baking temperature exceeds 100°C, multiply the basic load rating with the temperature coefficient.	• Me • Se ma	edical equipment miconductor/liquid crystal nufacturing equipment		
28 to 90	33.5 to 124.5	•	Easy mounting and reduced • Superb capability of absorbing mounting height when using • Output of the second secon	Cro ma	oss rails of gantry ichine tools		
28 to 55	33.5 to 69.5	•	2 units opposed to each other • Stainess steel type also since the side faces of the LM available as standard block have mounting holes • Type M1, achieving max service Heavy load, high rigidity	 Za Za Co ea 	xis of woodworking machines xis of measuring instruments mponents opposed to ch other		
61 to 114	70 to 140			 Au Ga Ga FN 	tomated warehouse irage intry robot IS traveling rail		
61 to 114	70 to 140	•	Since the central part of the LM rail is thinly structured, the LM Guide is capable of absorbing an error and achieving smooth motion if the parallelism between the two axes is poor Since the LM rail has a highly rigid sectional shape, it can be used as a structural member		nveyance system elding machine er ane		
65 to 124	48 to 100			 Forklift Coating machine Shield machine Stage setting 			

A1-35

				Specification	Load	Basic load rating (kN)		
Classification		Туре		Table	capacity diagram	Basic dynamic load rating	Basic static load rating	
	Caged Ball Cross LM Guide		SCR	▶⊠1-166	→ ⁺ ⁺ ←	36.8 to 253	64.7 to 408	
	Full-Complement LM Guide orthogonal type		CSR	▶⊠1-296		10.9 to 100	15.7 to 135	
	Caged Ball LM Guide -	1	SHW-CA	▶⊠1-140		4.31 to 70.2	5.66 to 91.4	
ad type	wide, low center of gravity types		SHW-CR, HR	▶⊠1-142	+	4.31 to 70.2	5.66 to 91.4	
/ equal lo	Full-Complement Ball LM Guide - wide, low center of gravity types	1.	HRW-CA	▶⊠1-242	→ <u>°</u> ,	5.53 to 80.3	9.1 to 109	
4-way		I	HRW-CR, LRM	▶⊠1-244		3.29 to 62.4	7.16 to 86.3	
	Full-ball Straight - Curved Guide	ال الحكي	HMG	▶⊠1-326	→ [↓] ↑	2.56 to 66.2	Straight sec- tion 4.23 to 66.7 Curved sec- tion 0.44 to 36.2	
	Caged Ball LM Guides Finite stroke	F	EPF	▶⊠1-174	→ ↑ ↑	0.90 to 3.71	1.60 to 5.88	
	Full-Complement	^v IL-DI	HR, HR-T	▶⊠1-264	↓ → ध ा ≁	2.82 to 226	3.48 to 232	
υ	Ball LM Guide - separate types		GSR-T	▶⊠1-276	+	8.42 to 37	9.77 to 39.1	
angeabl			GSR-V	▶⊠1-276	t	6.51 to 15.5	6.77 to 15.2	
Interchan desig	Full-Complement Ball LM Guides - LM rail-rack intergrated type	I E	GSR-R	▶⊠1-284	↓ → ഈ ७ ← †	15.5 to 37	15.2 to 39.1	

Selecting a Type

External dime	ensions (mm)					
Height	Width	Features	Major application			
70 to 180	88 to 226	 A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound Superbly high speed 	 Low center of gravity, precision XY table NC lathe Optical measuring instrument Automatic lathe Inspection equipment Cartesian coordinate Wire-cut electric discharge machine Hollow table Printed circuit board assembler Machine tool table Electric discharge machine Bernardia assembler Machine tool table Electric discharge machine 			
47 to 118	38.8 to 129.8	 A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed 	robot • XY axes of horizontal machining center			
12 to 50	40 to 162	 Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound 	Z axis of IC printed APC circuit board dilling Semiconductor/liquid			
12 to 50	30 to 130	SuperDly high speed Smooth motion in all mounting orientations Wide, low center of gravity, space saving structure Stainless steel type also available as standard	archine crystal manufacturing z Axis of small electric discharge machine equipment Loader Wafer transfer			
17 to 60	60 to 200	 4-way equal load, thin and highly rigid Wide, low center of gravity, space action attraction 	Machining center NC lathe Robot Wire-cut electric			
12 to 50	30 to 130	 Stainless steel type also available as standard 	discharge machine			
24 to 90	47 to 170	 Freedom of design Cost reduction through simplified structure 	Large swivel base C1 scanner Pendulum vehicle for rairoad Medical equipment Pantagraph Stage setting Control unit Car elevator Optical measuring machine Tool grinder X-Ray machine Tool changer C1 scanner C1 scanner C1 scanner C1 scanner Cl scanner Car equipment Car elevator Tool changer			
8 to 16	17 to 32	 Caged ball effect using a cage Smooth movement with minimal rolling variation 4-groove construction in a compact body 	 Semiconductor manufacturing equipment Medical equipment Inspection equipment Industrial machinery 			
8.5 to 60	18 to 125	 Low-Profile high rigidity, space saving structure Interchangeable with Cross-Roller Guide Preload can be adjusted Stainless steel type also available as standard 	 XYZ axes of electric discharge machine Precision table XZ axes of NC lathe Assembly robot Conveyance system Machining center Wire-cut electric discharge machine Tool changer Woodworking machine 			
20 to 38	32 to 68	 LM block and LM rail are both interchangeable Preload can be adjusted 				
20 to 30	32 to 50	 Capable or absorbing vertical level error and horizontal tolerance for parallelism 	Industrial robot Various conveyance systems Automated warehouse Palette changer Conting machine Conting machine			
30 to 38	59.91 to 80.18	 LM rail-rack integrated design eliminates assembly and adjustment work LM rail-rack integrated design enables a space-saving structure to be achieved Capable of supporting long strokes 	ATC Orar washing machine Door closing device			

LM Guide

Classification		Туре		Specification Table	Load capacity diagram	Basic load rating (kN)	
						Basic dynamic load rating	Basic static load rating
Miniature types	Caged Ball LM Guides		SRS-S	▶⊠1-152		1.09 to 4.5	0.964 to 3.39
			SRS-M			0.439 to 16.5	0.468 to 20.2
			SRS-N			0.515 to 9.71	0.586 to 8.55
			SRS-WS	▶⊠1-156		1.38 to 6.64	1.35 to 5.94
			SRS-WM			0.584 to 9.12	0.703 to 8.55
			SRS-WN			0.746 to 12.4	0.996 to 12.1
	Full-Complement Ball LM Guides		RSR-M	▶⊠1-254		0.18 to 8.82	0.27 to 12.7
			RSR-M1V	▶⊠1-366		1.47 to 8.82	2.25 to 12.7
			RSR-N	▶⊠1-254		0.3 to 14.2	0.44 to 20.6
			RSR-M1N	▶⊠1-366		2.6 to 14.2	3.96 to 20.6
		l	RSR-WM/WV	▶⊠1-254		0.25 to 6.66	0.47 to 9.8
	Full-Complement Ball LM Guide - wide types		RSR-M1WV	▶⊠1-368		2.45 to 6.66	3.92 to 9.8
			RSR-WN	▶⊠1-254		0.39 to 9.91	0.75 to 14.9
			RSR-M1WN	▶⊠1-368		3.52 to 9.91	5.37 to 14.9
	Full Complement Ball LM Guide - orthogonal type	Ţ Ŀ	MX	▶⊠1-302		0.59 to 2.04	1.1 to 3.21
Circular arc types	Full-Complement Ball LM Guides	U to	HCR	▶⊠1-318	→ †	4.7 to 141	8.53 to 215
Self-aligning types	Full-Complement Ball LM Guides	NE	NSR-TBC	▶⊠1-332	→ +	9.41 to 90.8	18.6 to 152

Selecting a Type

External dime	ensions (mm)				
Height	Width	Features	Major application		
8 to 16	17 to 32				
6 to 25	17 to 48	Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound Superbly high speed Smooth motion in all mounting orientations Stainless steel type also available as standard Lightweight and compact	IC/LSI manufacturing machine Medical equipment Electronic components		
6 to 16	12 to 32		Hard disc drive Slide unit of OA Guiment Stapper Stapper	Ľ	
9 to 16	25 to 60		• Wafer transfer equipment • Feed mechanism of IC	Gui	
6.5 to 16	17 to 60		 Printed circuit board assembly table bonding machine Inspection equipment 	de	
4 to 25	8 to 46	Stainless steel type also available			
10 to 25	20 to 46	as standard • Long type with increased load	IC/LSI manufacturing machine		
4 to 25	8 to 46	 Type M1, achieving max service temperature of 150°C, also 	Hard disc drive Slide unit of OA equipment		
10 to 25	20 to 46	available	Water transfer equipment Printed circuit board assembly table Medical equipment Electronic components of electron microscope Optical stage Stepper Plotting machine Feed mechanism of IC bonding machine Inspection equipment		
4.5 to 16	12 to 60	Stainless steel type also available			
12 to 16	30 to 60	 as standard Long type with increased load 			
4.5 to 16	12 to 60	Type M1, achieving max service temperature of 150°C, also			
12 to 16	30 to 60	available			
10 to 14.5	15.2 to 30.2	 A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Stainless steel type also available as standard 	 IC/LSI manufacturing machine Inspection equipment Slide unit of OA equipment Wafer transfer equipment Feed mechanism of IC bonding machine Printed circuit board assembly table Medical equipment Electronic components of electron microscope Optical stage 		
18 to 90	39 to 170	 Circular motion guide in a 4-way equal load design Highly accurate circular motion without play Allows an efficient design with the LM block placed in the loading point Large circular motion easily achieved 	 Large swivel base Pendulum vehicle for railroad Canter Juragraph Control unit Optical measuring machine Tool grinder X-Ray machine CT scanner Medical equipment Stage setting Car elevator Amusement machine Turntable Tool grinder X-Ray machine Tool changer 		
40 to 105	70 to 175	 Can be used in rough mount due to self-aligning on the fit surface of the case Preload can be adjusted Can be mounted on a black steel sheet 	 XY axes of ordinary industrial machinery Various conveyance systems Automated warehouse Palette changer Automatic coating machine Various welding machines 		

Calculating the Applied Load

The LM Guide is capable of receiving loads and moments in all directions that are generated due to the mounting orientation, alignment, gravity center position of a traveling object, thrust position and cutting resistance.

Fig.1 Directions of the Loads Applied on the LM Guide

Calculating an Applied Load

[Single-Axis Use]

Moment Equivalence

When the installation space for the LM Guide is limited, you may have to use only one LM block, or double LM blocks closely contacting with each other. In such a setting, the load distribution is not uniform and, as a result, an excessive load is applied in localized areas (i.e., both ends) as shown in Fig.2. Continued use under such conditions may result in flaking in those areas, consequently shortening the service life. In such a case, calculate the actual load by multiplying the moment value by any one of the equivalent-moment factors specified in Table1 to Table6.

An equivalent-load equation applicable when a moment acts on an LM Guide is shown below.

$\mathbf{P} = \mathbf{K} \cdot \mathbf{M}$

- P : Equivalent load per LM Guide (N)
- K : Equivalent moment factor
- M : Applied moment
- (N-mm)

Point of Selection

Calculating the Applied Load

Equivalent Factor

Since the rated load is equivalent to the permissible moment, the equivalent factor to be multiplied when equalizing the M_A , M_B and M_C moments to the applied load per block is obtained by dividing the rated loads in the corresponding directions.

With those models other than 4-way equal load types, however, the load ratings in the 4 directions differ from each other. Therefore, the equivalent factor values for the M_A and M_C moments also differ depending on whether the direction is radial or reverse radial.

Equivalent Factors for the MA Moment

Fig.3 Equivalent Factors for the MA Moment

Equivalent factors for the MA Moment

■Equivalent Factors for the M_B Moment

Fig.4 Equivalent Factors for the MB Moment

Equivalent factors for the MB Moment

$$\begin{tabular}{|c|c|c|c|c|} \hline Equivalent factor in the lateral directions & K_B = \frac{C_{0T}}{M_B} \end{tabular}$$

512E'

■Equivalent Factors for the Mc Moment

(N)

Fig.5 Equivalent Factors for the Mc Moment

Equivalent factors for the Mc Moment

P_T : Calculated load (lateral direction)

Point of Selection

Calculating the Applied Load

Table1 Equivalent Factors (Models SHS, SSR, SVR, SVS, SHW and SRS)

					Equivale	ent factor			
IVIOC	iei ino.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	Kcl
	15	1.382	× 10 ⁻¹	2.69	× 10 ⁻²	1.38×10-1	2.69×10-2	1.50	× 10 ⁻¹
	15L	1.07	× 10 ⁻¹	2.22	× 10 ⁻²	1.07×10 ⁻¹	2.22×10 ⁻²	1.50	× 10 ⁻¹
	20	1.15	× 10 ⁻¹	2.18	× 10 ⁻²	1.15×10-1	2.18×10 ⁻²	1.06	×10 ⁻¹
	20L	8.85	× 10 ⁻²	1.79	× 10 ⁻²	8.85×10 ⁻²	1.79×10 ⁻²	1.06	×10 ⁻¹
	25	9.25	× 10 ⁻²	1.90	× 10 ⁻²	9.25×10 ⁻²	1.90×10 ⁻²	9.29	× 10 ⁻²
	25L	7.622	× 10 ⁻²	1.62×10 ⁻²		7.62×10 ⁻²	1.62×10 ⁻²	9.29	× 10 ⁻²
	30	8.47	× 10 ⁻²	1.63×10 ⁻²		8.47×10 ⁻²	1.63×10 ⁻²	7.69	× 10 ⁻²
010	30L	6.52	× 10 ⁻²	1.34×10 ⁻²		6.52×10 ⁻²	1.34×10 ⁻²	7.69	× 10 ⁻²
585	35	6.95×10 ⁻²		1.43×10 ⁻²		6.95×10 ⁻²	1.43×10 ⁻²	6.29	× 10 ⁻²
	35L	5.43×10 ⁻²		1.16	× 10 ⁻²	5.43×10 ⁻²	1.16×10 ⁻²	6.29	× 10 ⁻²
	45	6.13×10 ⁻²		1.24×10 ⁻²		6.13×10 ⁻²	1.24×10 ⁻²	4.69	× 10 ⁻²
	45L	4.79×10 ⁻²		1.02×10 ⁻²		4.79×10 ⁻²	1.02×10 ⁻²	4.69	× 10 ⁻²
	55	4.97×10 ⁻²		1.02×10 ⁻²		4.97×10 ⁻²	1.02×10 ⁻²	4.02	× 10 ⁻²
	55L	3.88×10 ⁻²		8.30×10 ⁻³		3.88×10 ⁻²	8.30×10 ⁻³	4.02	× 10 ⁻²
	65	3.87×10 ⁻²		7.91	× 10 ⁻³	3.87×10 ⁻²	7.91×10 ⁻³	3.40	× 10 ⁻²
	65L	3.06×10 ⁻²		6.51	× 10 ⁻³	3.06×10 ⁻²	6.51×10 ⁻³	3.40	× 10 ⁻²
	15XW (TB)	2.08×10 ⁻¹	1.04×10 ⁻¹	3.75×10 ⁻²	1.87×10 ⁻²	1.46×10-1	2.59×10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	15XV	3.19×10 ⁻¹	1.60×10 ⁻¹	5.03×10 ⁻²	2.51×10 ⁻²	2.20×10 ⁻¹	3.41×10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	20XW (TB)	1.69×10 ⁻¹	8.46×10 ⁻²	3.23×10 ⁻²	1.62×10 ⁻²	1.19×10-1	2.25×10 ⁻²	1.29×10 ⁻¹	6.44×10 ⁻²
000	20XV	2.75×10 ⁻¹	1.37×10 ⁻¹	4.28×10 ⁻²	2.14×10 ⁻²	1.89×10-1	2.89×10 ⁻²	1.29×10-1	6.44×10 ⁻²
JOOR	25XW (TB)	1.41×10 ⁻¹	7.05×10 ⁻²	$2.56 imes 10^{-2}$	1.28×10 ⁻²	9.86×10 ⁻²	1.77×10 ⁻²	1.10×10 ⁻¹	5.51×10 ⁻²
	25XV	2.15×10 ⁻¹	1.08×10 ⁻¹	3.40×10 ⁻²	1.70×10 ⁻²	1.48×10 ⁻¹	2.31×10 ⁻²	1.10×10-1	5.51×10 ⁻²
	30XW	1.18×10 ⁻¹	5.91×10 ⁻²	2.19×10 ⁻²	1.10×10 ⁻²	8.26×10 ⁻²	1.52×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²
	35XW	1.01×10 ⁻¹	5.03×10 ⁻²	1.92×10 ⁻²	9.60×10 ⁻³	7.04×10 ⁻²	1.33×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²
	25	1.13×10 ⁻¹	7.28×10 ⁻²	2.25×10 ⁻²	1.45×10 ⁻²	7.14×10 ⁻²	1.43×10 ⁻²	9.59×10 ⁻²	6.17×10 ⁻²
	25L	9.14×10 ⁻²	5.88×10 ⁻²	1.85×10 ⁻²	1.19×10 ⁻²	5.80×10 ⁻²	1.17×10 ⁻²	9.59×10 ⁻²	6.17×10 ⁻²
	30	1.01×10 ⁻¹	6.50×10 ⁻²	1.89×10 ⁻²	1.21×10 ⁻²	6.36×10 ⁻²	1.19×10 ⁻²	8.45×10 ⁻²	5.43×10 ⁻²
	30L	7.56×10 ⁻²	4.86×10 ⁻²	1.57×10 ⁻²	1.01×10 ⁻²	4.79×10 ⁻²	1.00×10 ⁻²	8.45×10 ⁻²	5.43×10 ⁻²
	35	9.19×10 ⁻²	5.91×10 ⁻²	1.68×10 ⁻²	1.08×10 ⁻²	5.77×10 ⁻²	1.06×10 ⁻²	7.08×10 ⁻²	4.55×10 ⁻²
SVP	35L	6.80×10 ⁻²	4.37×10 ⁻²	1.39×10 ⁻²	8.97×10 ⁻³	4.31×10 ⁻²	8.86×10 ⁻³	7.08×10 ⁻²	4.55×10 ⁻²
	45	6.73×10 ⁻²	4.33×10 ⁻²	1.35×10 ⁻²	8.71×10 ⁻³	4.25×10 ⁻²	8.59×10 ⁻³	5.32×10 ⁻²	3.42×10 ⁻²
	45L	5.40×10 ⁻²	3.47×10 ⁻²	1.10×10 ⁻²	7.09×10 ⁻³	3.41×10 ⁻²	6.97×10 ⁻³	5.30×10 ⁻²	3.41×10 ⁻²
	55	5.89×10 ⁻²	3.79×10 ⁻²	1.14×10 ⁻²	7.35×10 ⁻³	3.72×10 ⁻²	7.24×10 ⁻³	4.63×10 ⁻²	2.98×10 ⁻²
	55L	4.55×10 ⁻²	2.92×10 ⁻²	9.45×10 ⁻³	6.08×10 ⁻³	2.89×10 ⁻²	6.02×10 ⁻³	4.63×10 ⁻²	2.98×10 ⁻²
	65	4.85×10 ⁻²	3.12×10 ⁻²	1.01×10 ⁻²	6.48×10 ⁻³	3.06×10 ⁻²	6.40×10 ⁻³	3.91×10 ⁻²	2.51×10 ⁻²
	651	3.58×10^{-2}	2.30×10^{-2}	7.73×10 ⁻³	4 97 × 10 ⁻³	2 28 X 10 ⁻²	4 93 × 10 ⁻³	3 91 X 10 ⁻²	2 51 X 10 ⁻²

Moo					Equivale	ent factor			
IVIOC	iei ino.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	25	1.09×10 ⁻¹	9.14×10 ⁻²	2.17×10 ⁻²	1.82×10 ⁻²	1.00×10 ⁻¹	2.00×10 ⁻²	9.95×10 ⁻²	8.35×10 ⁻²
	25L	8.82×10 ⁻²	7.40×10 ⁻²	1.78×10 ⁻²	1.50×10 ⁻²	8.13×10 ⁻²	1.64×10 ⁻²	9.95×10 ⁻²	8.35×10 ⁻²
	30	9.71×10 ⁻²	8.15×10 ⁻²	1.82×10 ⁻²	1.52×10 ⁻²	8.95×10 ⁻²	1.67×10 ⁻²	8.78×10 ⁻²	7.37×10 ⁻²
	30L	7.29×10 ⁻²	6.11×10 ⁻²	1.51×10 ⁻²	1.27×10 ⁻²	6.72×10 ⁻²	1.39×10 ⁻²	8.78×10 ⁻²	7.37×10 ⁻²
	35	8.84×10 ⁻²	7.42×10 ⁻²	1.61×10 ⁻²	1.35×10 ⁻²	8.14×10 ⁻²	1.48×10 ⁻²	7.36×10 ⁻²	6.17×10 ⁻²
eve	35L	6.56×10 ⁻²	5.50×10 ⁻²	1.34×10 ⁻²	1.13×10 ⁻²	6.04×10 ⁻²	1.24×10 ⁻²	7.36×10 ⁻²	6.17×10 ⁻²
303	45	6.48×10 ⁻²	5.44×10 ⁻²	1.30×10 ⁻²	1.09×10 ⁻²	5.98×10 ⁻²	1.20×10 ⁻²	5.45×10 ⁻²	4.57×10 ⁻²
	45L	5.22×10 ⁻²	4.38×10 ⁻²	1.07×10 ⁻²	8.94×10 ⁻³	4.81×10 ⁻²	9.81×10 ⁻³	5.44×10 ⁻²	4.56×10 ⁻²
	55	5.67×10 ⁻²	4.76×10 ⁻²	1.10×10 ⁻²	9.24×10 ⁻³	5.23×10 ⁻²	1.01×10 ⁻²	4.78×10 ⁻²	4.01×10^{-2}
	55L	4.39×10 ⁻²	3.68×10 ⁻²	9.12×10 ⁻³	7.65×10 ⁻³	4.05×10 ⁻²	8.40×10 ⁻³	4.78×10 ⁻²	4.01×10 ⁻²
	65	4.67×10 ⁻²	3.92×10 ⁻²	9.72×10 ⁻³	8.15×10 ⁻³	4.30×10 ⁻²	8.95×10 ⁻³	4.04×10 ⁻²	3.39×10 ⁻²
	65L	3.46×10 ⁻²	2.90×10 ⁻²	7.46×10 ⁻³	6.26×10 ⁻³	3.19×10 ⁻²	6.88×10 ⁻³	4.04×10 ⁻²	3.39×10 ⁻²
	12	2.48×10 ⁻¹		4.69×10 ⁻²		2.48×10 ⁻¹	4.69×10 ⁻²	1.40	×10 ⁻¹
	12HR	1.70×10 ⁻¹		3.52×10 ⁻²		1.70×10 ⁻¹	10 ⁻¹ 3.52×10 ⁻² 1		×10 ⁻¹
	14	1.92×10 ⁻¹		3.80×10 ⁻²		1.92×10 ⁻¹	3.80×10 ⁻²	9.93	×10 ⁻²
SHW	17	1.72×10 ⁻¹		3.41×10 ⁻²		1.72×10 ⁻¹	3.41×10 ⁻²	6.21	× 10 ⁻²
300	21	1.59×10 ⁻¹		2.952	× 10 ⁻²	1.59×10-1	2.95×10 ⁻²	5.57	×10 ⁻²
	27	1.21×10 ⁻¹		2.392	× 10 ⁻²	1.21×10 ⁻¹	2.39×10 ⁻²	4.993	×10 ⁻²
	35	8.15×10 ⁻²		1.642	× 10 ⁻²	8.15×10 ⁻²	1.64×10 ⁻²	3.02	×10 ⁻²
	50	6.22×10 ⁻²		1.242	× 10 ⁻²	6.22×10 ⁻²	1.24×10 ⁻²	2.30	×10 ⁻²
	5M	6.33×10 ⁻¹		9.202	× 10 ⁻²	6.45×10 ⁻¹	9.30×10 ⁻²	3.85	×10 ⁻¹
	5GM	6.71×10 ⁻¹		9.15	× 10 ⁻²	6.66×10 ⁻¹	9.08×10 ⁻²	3.85	×10 ⁻¹
	5N	5.232	×10 ⁻¹	7.87×10 ⁻²		5.32×10 ⁻¹	7.99×10 ⁻²	3.862	×10 ⁻¹
	5GN	5.252	×10 ⁻¹	7.97×10 ⁻²		5.33×10 ⁻¹	8.12×10 ⁻²	3.84	×10 ⁻¹
	5WM	4.482	×10 ⁻¹	7.30×10 ⁻²		4.56×10 ⁻¹	7.40×10 ⁻²	1.963	×10 ⁻¹
	5WGM	4.582	×10 ⁻¹	7.39×10 ⁻²		4.54×10 ⁻¹	7.34×10 ⁻²	1.96	×10 ⁻¹
	5WN	3.312	×10 ⁻¹	5.93×10 ⁻²		3.36×10 ⁻¹	6.02×10 ⁻²	1.963	×10 ⁻¹
	5WGN	3.312	× 10 ⁻¹	5.97×10 ⁻²		3.35×10 ⁻¹	6.05×10 ⁻²	1.963	×10 ⁻¹
	7S	6.032	×10 ⁻¹	7.652	× 10 ⁻²	6.27×10 ⁻¹	7.91×10 ⁻²	2.58	×10 ⁻¹
CDC	7GS	5.922	× 10 ⁻¹	7.892	× 10 ⁻²	6.14×10 ⁻¹	8.17×10 ⁻²	2.58	×10 ⁻¹
010	7M	4.192	×10 ⁻¹	6.762	×10 ⁻²	4.18×10 ⁻¹	6.94×10 ⁻²	2.58	×10 ⁻¹
	7GM	4.272	×10 ⁻¹	6.042	× 10 ⁻²	4.43×10 ⁻¹	6.23×10 ⁻²	2.34	×10 ⁻¹
	7N	2.97	×10 ⁻¹	5.352	×10 ⁻²	3.07×10 ⁻¹	5.50×10 ⁻²	2.58	×10 ⁻¹
	7GN	3.11>	× 10 ⁻¹	5.352	× 10 ⁻²	3.20×10 ⁻¹	5.51×10 ⁻²	2.58	×10 ⁻¹
	7WS	4.672	× 10 ⁻¹	6.892	× 10 ⁻²	4.84×10 ⁻¹	7.08×10 ⁻²	1.36	× 10 ⁻¹
	7WGS	5.232	× 10 ⁻¹	6.752	× 10 ⁻²	5.43×10 ⁻¹	6.95×10 ⁻²	1.36	× 10 ⁻¹
	7WM	3.012	× 10 ⁻¹	5.322	× 10 ⁻²	3.00×10 ⁻¹	5.46×10 ⁻²	1.36	× 10 ⁻¹
	7WGM	2.832	× 10 ⁻¹	4.872	× 10 ⁻²	2.93×10-1	5.02×10 ⁻²	1.24	× 10 ⁻¹
	7WN	2.192	× 10 ⁻¹	4.162	× 10 ⁻²	2.24×10 ⁻¹	4.28×10 ⁻²	1.36	× 10 ⁻¹
	7WGN	2.202	× 10 ⁻¹	4.17	× 10 ⁻²	2.27×10 ⁻¹	4.31×10 ⁻²	1.36	×10 ⁻¹

 K_{AR1} : Equivalent factor in the M_{A} radial direction when one LM block is used K_{AL1} : Equivalent factor in the M_{A} reverse radial direction when one LM block is used

KAR2 : Equivalent factor in the MA radial direction when two

LM blocks are used in close contact with each other K_{AL2} : Equivalent factor in the M_{A} reverse radial direction when two LM blocks are used in close contact with each other $K_{\mbox{\tiny B1}}$ $\,$: $M_{\mbox{\tiny B}}$ Equivalent factor when one LM block is used

 $K_{\scriptscriptstyle B2}$: $M_{\scriptscriptstyle B}$ Equivalent factor when two LM blocks are used in close contact with each other

 $\begin{array}{l} K_{\text{CR}} & : Equivalent factor in the M_c radial direction \\ K_{\text{CL}} & : Equivalent factor in the M_c reverse radial direction \end{array}$

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl

Point of Selection

Calculating the Applied Load

Tablez Edulvalent Factors (Wodels SKS, SCK, EPF and HS	Table2	Equivalent	Factors	(Models	SRS.	SCR.	EPF	and	HS
--	--------	------------	---------	---------	------	------	-----	-----	----

Mag					Equival	ent factor			
IVIOC	Jei NO.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
	9XS	4.86×	× 10 ⁻¹	6.89	× 10 ⁻²	5.04×10 ⁻¹	7.11×10 ⁻²	2.17	× 10 ⁻¹
	9XGS	5.37×	(10 ⁻¹	6.77	× 10 ⁻²	5.57×10-1	7.00×10 ⁻²	2.17	× 10 ⁻¹
	9XM	2.95×	× 10 ⁻¹	5.27	× 10 ⁻²	3.06×10 ⁻¹ 5.43×10 ⁻²		2.17×10 ⁻¹	
	9XGM	3.10×	× 10 ⁻¹	5.28	× 10 ⁻²	3.19×10 ⁻¹ 5.44×10 ⁻²		2.17×10 ⁻¹	
	9XN	2.13×	10 ⁻¹	4.12	× 10 ⁻²	2.19×10 ⁻¹ 4.23×10 ⁻²		2.17×10 ⁻¹	
	9XGN	2.18×	× 10 ⁻¹	4.14	× 10 ⁻²	2.24×10-1	4.27×10 ⁻²	2.17	× 10 ⁻¹
	9WS	4.10×	10 ⁻¹	5.73	× 10 ⁻²	4.25×10-1	5.63×10 ⁻²	1.06	× 10 ⁻¹
	9WGS	4.16×	× 10 ⁻¹	5.80	× 10 ⁻²	4.30×10-1	5.98×10 ⁻²	1.06	× 10 ⁻¹
	9WM	2.37×	10 ⁻¹	4.25	× 10 ⁻²	2.44×10-1	4.37×10 ⁻²	1.06	× 10 ⁻¹
	9WGM	2.41×	× 10 ⁻¹	4.80	× 10 ⁻²	2.41×10-1	4.13×10 ⁻²	1.06	× 10 ⁻¹
	9WN	1.74×	× 10 ⁻¹	3.35	× 10 ⁻²	1.78×10 ⁻¹	3.44×10 ⁻²	1.06	× 10 ⁻¹
	9WGN	1.75×	10 ⁻¹	3.38	× 10 ⁻²	1.73×10-1	3.32×10 ⁻²	1.06	× 10 ⁻¹
	12S	4.55×	× 10 ⁻¹	5.60	× 10 ⁻²	4.55×10-1	5.60×10 ⁻²	1.52	× 10 ⁻¹
	12GS	5.04×	10 -1	5.51	× 10 ⁻²	5.04×10-1	5.51×10 ⁻²	1.52	× 10 ⁻¹
	12M	2.94×	10 ⁻¹	4.50	× 10 ⁻²	2.94×10 ⁻¹	4.50×10 ⁻²	1.53	× 10 ⁻¹
	12GM	2.93×10 ⁻¹		4.49	× 10 ⁻²	2.93×10 ⁻¹	4.49×10 ⁻²	1.53	× 10 ⁻¹
	12N	1.86×10-1		3.51	× 10 ⁻²	1.86×10-1	3.51×10 ⁻²	1.53	× 10 ⁻¹
	12GN	1.96×	× 10 ⁻¹	3.50	× 10 ⁻²	1.96×10-1	3.50×10 ⁻²	1.53	× 10 ⁻¹
	12WS	3.22×10 ⁻¹		5.00	× 10 ⁻²	3.22×10-1	5.00×10 ⁻²	7.97	× 10 ⁻²
	12WGS	3.32×10 ⁻¹		5.07	× 10 ⁻²	3.32×10-1	5.07×10 ⁻²	7.97	× 10 ⁻²
585	12WM	2.00×	10 ⁻¹	3.69	× 10 ⁻²	2.00×10 ⁻¹	3.69×10 ⁻²	7.97	× 10 ⁻²
	12WGM	2.07×10 ⁻¹		3.64	× 10 ⁻²	2.07×10 ⁻¹	3.64×10 ⁻²	7.96	× 10 ⁻²
	12WN	1.44×10 ⁻¹		2.83×10 ⁻²		1.44×10 ⁻¹	2.83×10 ⁻²	7.97	× 10 ⁻²
	12WGN	1.46×	10 ⁻¹	2.85×10 ⁻²		1.46×10-1	2.85×10 ⁻²	7.95×10 ⁻²	
	15S	3.56×	× 10 ⁻¹	4.38×10 ⁻²		3.56×10-1	3.56×10 ⁻¹ 4.38×10 ⁻²		× 10 ⁻¹
	15GS	3.37×	(10 ⁻¹	4.57	×10 ⁻²	3.37×10 ⁻¹	4.57×10 ⁻²	1.41	×10 ⁻¹
	15M	2.17×	10 ⁻¹	3.69×10 ⁻²		2.17×10 ⁻¹	3.69×10 ⁻²	1.41	×10 ⁻¹
	15GM	2.31×	(10 ⁻¹	3.61	× 10 ⁻²	2.31×10 ⁻¹	3.61×10 ⁻²	1.41	× 10 ⁻¹
	15N	1.43×	10 ⁻¹	2.73	×10 ⁻²	1.43×10-1	2.73×10 ⁻²	1.41	×10 ⁻¹
	15GN	1.45×	× 10 ⁻¹	2.75	× 10 ⁻²	1.45×10-1	2.75×10 ⁻²	1.41	× 10 ⁻¹
	15WS	2.34×	10 ⁻¹	3.76	×10 ⁻²	2.34×10 ⁻¹	3.76×10 ⁻²	4.83	× 10 ⁻²
	15WGS	2.34×	10 ⁻¹	3.81	× 10 ⁻²	2.34×10 ⁻¹	3.81×10 ⁻²	4.84	×10 ⁻²
	15WM	1.67×	10 ⁻¹	2.94	× 10 ⁻²	1.67×10-1	2.94×10 ⁻²	4.83	× 10 ⁻²
	15WGM	1.63×	× 10 ⁻¹	2.93	× 10 ⁻²	1.63×10-1	2.93×10 ⁻²	4.83	× 10 ⁻²
	15WN	1.13×	10 ⁻¹	2.27	× 10 ⁻²	1.13×10-1	2.27×10 ⁻²	4.83	× 10 ⁻²
	15WGN	1.15×	10 -1	2.28	× 10 ⁻²	1.15×10-1	2.28×10 ⁻²	4.83	× 10 ⁻²
	20M	1.80×	×10 ⁻¹	3.30	× 10 ⁻²	1.86×10 ⁻¹	3.41×10 ⁻²	9.34	× 10 ⁻²
	20GM	2.10×	10 -1	3.88	× 10 ⁻²	2.10×10-1	3.87×10 ⁻²	1.03	× 10 ⁻¹
	25M	1.14×	×10 ⁻¹	2.17	× 10 ⁻²	1.14×10-1	2.17×10 ⁻²	8.13	× 10 ⁻²
	25GM	1.23×	10 ⁻¹	2.32	× 10 ⁻²	1.23×10-1	2.32×10 ⁻²	8.75	× 10 ⁻²

ALMOTION

Mag					Equival	ent factor			
IVIOC	iel INO.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	Кв1	K _{B2}	Kcr	Kcl
	15S	1.38×	< 10 ⁻¹	2.69	×10 ⁻²	1.382	× 10 ⁻¹	1.50	×10 ⁻¹
	20S	1.15×	< 10 -1	2.18	×10 ⁻²	1.15	× 10 ⁻¹	1.06	×10 ⁻¹
	20	8.85×	< 10 ⁻²	1.79	×10 ⁻²	8.85	× 10 ⁻²	1.06	×10 ⁻¹
SCD	25	9.25×	< 10 ⁻²	1.90	×10 ⁻²	9.25×10 ⁻²	1.90×10 ⁻²	9.29	×10 ⁻²
JOCK	30	8.47×	< 10 ⁻²	1.63	×10 ⁻²	8.47×10 ⁻²	1.63×10 ⁻²	7.69×10 ⁻²	
	35	6.95×	< 10 ⁻²	1.43	×10 ⁻²	6.95×10 ⁻²	1.43×10 ⁻²	6.29×10 ⁻²	
	45	6.13×	< 10 ⁻²	1.24×10 ⁻²		6.13×10 ⁻² 1.24×10 ⁻²		4.69×10 ⁻²	
	65	3.87×	< 10 ⁻²	7.91×10 ⁻³		3.87×10 ⁻²	7.91×10 ⁻³	3.40	×10 ⁻²
	7M	3.55×	< 10 ⁻¹	-	_	3.55×10 ⁻¹		2.86	×10 ⁻¹
	9M	3.10×	< 10 ⁻¹	-	_	3.10×10-1		2.22	×10 ⁻¹
EPF	12M	2.68×	< 10 ⁻¹	-	_	2.68×10 ⁻¹		1.67	×10 ⁻¹
	15M	2.00×	< 10 ⁻¹	-	_	2.00×10 ⁻¹		1.34	×10 ⁻¹
	8	4.39×	< 10 ⁻¹	6.75	×10 ⁻²	4.39×10 ⁻¹	6.75×10 ⁻²	2.97	×10 ⁻¹
	10	3.09×	< 10 ⁻¹	5.33	×10 ⁻²	3.09×10-1	5.33×10 ⁻²	2.35	×10 ⁻¹
	12	2.08×	< 10 ⁻¹	3.74	× 10 ⁻²	2.08×10 ⁻¹	3.74×10 ⁻²	1.91	×10 ⁻¹
	15	1.66×10 ⁻¹		2.98	×10 ⁻²	1.66×10-1	2.98×10 ⁻²	1.57	×10 ⁻¹
	15L	1.18×10 ⁻¹		2.33	×10 ⁻²	1.18×10-1	2.33×10 ⁻²	1.57	×10 ⁻¹
	20	1.26×10-1		2.28	×10 ⁻²	1.26×10-1	2.28×10 ⁻²	1.17	×10 ⁻¹
	20L	9.88×10 ⁻²		1.92	×10 ⁻²	9.88×10 ⁻²	1.92×10 ⁻²	1.17	×10 ⁻¹
	25	1.12×10 ⁻¹		2.02	×10 ⁻²	1.12×10 ⁻¹	2.02×10 ⁻²	9.96	×10 ⁻²
	25L	8.23×10 ⁻²		1.70×10 ⁻²		8.23×10 ⁻²	1.70×10 ⁻²	9.96	×10 ⁻²
	30	8.97×10 ⁻²		1.73×10 ⁻²		8.97×10 ⁻²	1.73×10 ⁻²	8.24	×10 ⁻²
	30L	7.05×	< 10 ⁻²	1.44×10 ⁻²		7.05×10 ⁻² 1.44×10 ⁻²		8.24×10 ⁻²	
	35	7.85×	< 10 ⁻²	1.56×10 ⁻²		7.85×10 ⁻² 1.56×10 ⁻²		6.69×10 ⁻²	
	35L	6.17×	< 10 ⁻²	1.29	×10 ⁻²	6.17×10 ⁻²	1.29×10 ⁻²	6.69	×10 ⁻²
HSR	45	6.73×	< 10 ⁻²	1.21	×10 ⁻²	6.73×10 ⁻²	1.21×10 ⁻²	5.20	×10 ⁻²
	45L	5.22×	< 10 ⁻²	1.01	×10 ⁻²	5.22×10 ⁻²	1.01×10^{-2}	5.20	×10 ⁻²
	55	5.61×	< 10 ⁻²	1.03	×10 ⁻²	5.61×10 ⁻²	1.03×10 ⁻²	4.26	×10 ⁻²
	55L	4.35×	< 10 ⁻²	8.56	×10 ⁻³	4.35×10 ⁻²	8.56×10 ⁻³	4.26	×10 ⁻²
	65	4.49×	< 10 ⁻²	9.13	×10 ⁻³	4.49×10 ⁻²	9.13×10 ⁻³	3.68	×10 ⁻²
	65L	3.29×	< 10 ⁻²	7.08	×10 ⁻³	3.29×10 ⁻²	7.08×10 ⁻³	3.68	×10 ⁻²
	85	3.49×	< 10 ⁻²	6.94	×10 ⁻³	3.49×10 ⁻²	6.94×10 ⁻³	2.78	×10 ⁻²
	85L	2.74×	< 10 ⁻²	5.72	×10 ⁻³	2.74×10 ⁻²	5.72×10 ⁻³	2.78	×10 ⁻²
	100	2.61>	< 10 ⁻²	5.16	×10 ⁻³	2.61×10 ⁻²	5.16×10 ⁻³	2.24	×10 ⁻²
	120	2.37×	< 10 ⁻²	4.72	×10 ⁻³	2.37×10 ⁻²	4.72×10 ⁻³	1.96	×10 ⁻²
	150	2.17×	< 10 ⁻²	4.35	×10 ⁻³	2.17×10 ⁻²	4.35×10 ⁻³	1.61	×10 ⁻²
	15M2A	1.65×	< 10 ⁻¹	2.89	×10 ⁻²	1.65×10-1	2.89×10 ⁻²	1.86	×10 ⁻¹
	20M2A	1.23>	< 10 ⁻¹	2.23	×10 ⁻²	1.23×10-1	2.23×10 ⁻²	1.34	×10 ⁻¹
	25M2A	1.10>	< 10 ⁻¹	1.98	×10 ⁻²	1.10×10 ⁻¹	1.98×10 ⁻²	1.14	×10 ⁻¹

 $K_{\mbox{\tiny ARt}}$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

 K_{AL1} : Equivalent factor in the M_A reverse radial direction when one LM block is used

 K_{AR2} : Equivalent factor in the M_A radial direction when two LM blocks are used in close contact with each other

 $K_{\scriptscriptstyle AL2}\;$: Equivalent factor in the $M_{\scriptscriptstyle A}$ reverse radial direction when two LM blocks are used in close contact with each other K_{B1} : M_{B} Equivalent factor when one LM block is used

K_{B2} : M_B Equivalent factor when two LM blocks are used in close contact with each other

 $\begin{array}{l} \mathsf{K}_{\mathsf{CR}} & : \mathsf{Equivalent} \ \mathsf{factor} \ \mathsf{in} \ \mathsf{the} \ \mathsf{M}_{\mathsf{c}} \ \mathsf{radial} \ \mathsf{direction} \\ \mathsf{K}_{\mathsf{CL}} & : \mathsf{Equivalent} \ \mathsf{factor} \ \mathsf{in} \ \mathsf{the} \ \mathsf{M}_{\mathsf{c}} \ \mathsf{reverse} \ \mathsf{radial} \ \mathsf{direction} \end{array}$

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

Point of Selection

Calculating the Applied Load

Model No					Equivale	ent factor			
Mod	iel No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}
	15W (TB)	2.08×10 ⁻¹	1.04×10 ⁻¹	3.72×10 ⁻²	1.86×10 ⁻²	1.46×10 ⁻¹	2.57×10 ⁻²	1.69×10-1	8.43×10 ⁻²
	15V (SB)	3.40×10 ⁻¹	1.70×10 ⁻¹	5.00×10 ⁻²	2.50×10 ⁻²	2.34×10 ⁻¹	3.37×10 ⁻²	1.69×10 ⁻¹	8.43×10 ⁻²
	20W (TB)	1.71×10-1	8.56×10 ⁻²	3.23×10 ⁻²	1.61×10 ⁻²	1.20×10-1	2.24×10 ⁻²	1.28×10-1	6.40×10 ⁻²
	20V (SB)	2.69×10 ⁻¹	1.34×10 ⁻¹	4.34×10 ⁻²	2.17×10 ⁻²	1.86×10 ⁻¹	2.95×10 ⁻²	1.28×10 ⁻¹	6.39×10 ⁻²
	25W (TB)	1.37×10 ⁻¹	6.85×10 ⁻²	2.57×10 ⁻²	1.29×10 ⁻²	9.61×10 ⁻²	1.78×10 ⁻²	1.09×10 ⁻¹	5.47×10 ⁻²
	25V (SB)	2.15×10 ⁻¹	1.08×10-1	3.47×10 ⁻²	1.73×10 ⁻²	1.49×10 ⁻¹	2.36×10 ⁻²	1.10×10-1	5.48×10 ⁻²
	30W (TB)	1.14×10-1	5.71×10 ⁻²	2.21×10 ⁻²	1.10×10 ⁻²	8.01×10 ⁻²	1.54×10 ⁻²	9.16×10 ⁻²	4.58×10 ⁻²
	30V (SB)	1.98×10 ⁻¹	9.92×10 ⁻²	2.98×10 ⁻²	1.49×10 ⁻²	1.37×10 ⁻¹	2.01×10 ⁻²	9.16×10 ⁻²	4.58×10 ⁻²
SR	35W (TB)	1.04×10 ⁻¹	5.21×10 ⁻²	1.91×10 ⁻²	9.57×10 ⁻³	7.30×10 ⁻²	1.32×10 ⁻²	7.59×10 ⁻²	3.80×10 ⁻²
	35V (SB)	1.70×10-1	8.50×10 ⁻²	2.61×10 ⁻²	1.31×10 ⁻²	1.17×10-1	1.77×10 ⁻²	7.59×10 ⁻²	3.80×10 ⁻²
	45W (TB)	9.11×10 ⁻²	4.56×10 ⁻²	1.69×10 ⁻²	8.44×10 ⁻³	6.38×10 ⁻²	1.17×10 ⁻²	5.67×10 ⁻²	2.83×10 ⁻²
	55W (TB)	6.85×10 ⁻²	3.42×10 ⁻²	1.37×10 ⁻²	6.86×10 ⁻³	4.80×10 ⁻²	9.57×10 ⁻³	5.38×10 ⁻²	2.69×10 ⁻²
	15MSV	4.00×10 ⁻¹	2.48×10 ⁻¹	5.89×10 ⁻²	3.65×10 ⁻²	3.51×10 ⁻¹	4.98×10 ⁻²	2.76×10 ⁻¹	1.71×10 ⁻¹
	15MSW	2.43×10 ⁻¹	1.50×10-1	4.38×10 ⁻²	2.72×10 ⁻²	2.17×10 ⁻¹	3.84×10 ⁻²	2.74×10 ⁻¹	1.70×10 ⁻¹
	20MSV	3.19×10-1	1.97×10 ⁻¹	5.09×10 ⁻²	3.16×10 ⁻²	2.77×10 ⁻¹	4.36×10 ⁻²	2.10×10-1	1.30×10 ⁻¹
	20MSW	1.99×10 ⁻¹	1.24×10 ⁻¹	3.77×10 ⁻²	2.34×10 ⁻²	1.78×10 ⁻¹	3.33×10 ⁻²	2.09×10 ⁻¹	1.30×10 ⁻¹
	25	11.90×10 ⁻²	7.64×10 ⁻²	2.24×10 ⁻²	14.3×10 ⁻³	7.47×10 ⁻²	1.41×10 ⁻²	9.69×10-2	6.2×10 ⁻²
	25L	9.18×10 ⁻²	5.87×10 ⁻²	1.85×10 ⁻²	11.8×10 ⁻³	5.78×10 ⁻²	1.17×10 ⁻²	9.69×10 ⁻²	6.2×10 ⁻²
	30	9.95×10 ⁻²	6.37×10 ⁻²	1.90×10 ⁻²	12.1×10 ⁻³	6.23×10 ⁻²	1.19×10 ⁻²	8.55×10-2	5.47×10 ⁻²
	30L	7.65×10 ⁻²	4.89×10 ⁻²	1.57×10 ⁻²	10.0×10 ⁻³	4.82×10 ⁻²	0.99×10 ⁻²	8.55×10-2	5.47×10 ⁻²
	35	9.08×10 ⁻²	5.81×10 ⁻²	1.69×10 ⁻²	10.8×10 ⁻³	5.67×10 ⁻²	1.06×10 ⁻²	7.17×10 ⁻²	4.59×10 ⁻²
	35L	6.88×10 ⁻²	4.40×10 ⁻²	1.40×10 ⁻²	8.9×10 ⁻³	4.32×10 ⁻²	0.88×10 ⁻²	7.17×10 ⁻²	4.59×10 ⁻²
INR-A	45	7.02×10 ⁻²	4.50×10 ⁻²	1.35×10 ⁻²	8.6×10 ⁻³	4.37×10 ⁻²	0.84×10 ⁻²	5.31×10 ⁻²	3.4×10 ⁻²
	45L	5.25×10 ⁻²	3.36×10 ⁻²	1.11×10 ⁻²	7.1×10 ⁻³	3.31×10 ⁻²	0.70×10 ⁻²	5.32×10 ⁻²	3.41×10 ⁻²
	55	5.92×10 ⁻²	3.79×10 ⁻²	1.15×10 ⁻²	7.3×10 ⁻³	3.72×10 ⁻²	0.72×10 ⁻²	4.66×10 ⁻²	2.98×10 ⁻²
	55L	4.66×10 ⁻²	2.98×10 ⁻²	0.94×10 ⁻²	6.0×10 ⁻³	2.92×10 ⁻²	0.59×10 ⁻²	4.65×10 ⁻²	2.98×10 ⁻²
	65	5.12×10 ⁻²	3.28×10 ⁻²	1.00×10 ⁻²	6.4×10 ⁻³	3.21×10 ⁻²	0.63×10 ⁻²	3.93×10-2	2.52×10 ⁻²
	65L	3.66×10 ⁻²	2.34×10 ⁻²	0.77×10 ⁻²	4.9×10 ⁻³	2.31×10 ⁻²	0.49×10 ⁻²	3.93×10-2	2.52×10 ⁻²
	75	4.21×10 ⁻²	2.99×10 ⁻²	8.31×10 ⁻³	5.90×10 ⁻³	3.08×10 ⁻²	6.13×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²
	75L	3.14×10 ⁻²	2.23×10 ⁻²	6.74×10 ⁻³	4.78×10 ⁻³	2.33×10 ⁻²	5.04×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²
	85	3.70×10 ⁻²	2.62×10 ⁻²	7.31×10 ⁻³	5.19×10 ⁻³	2.71×10 ⁻²	5.40×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²
	85L	2.80×10 ⁻²	1.99×10 ⁻²	6.07×10 ⁻³	4.31×10 ⁻³	2.08×10 ⁻²	4.55×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²
	100	3.05×10 ⁻²	2.17×10 ⁻²	6.20×10 ⁻³	4.41×10 ⁻³	2.26×10 ⁻²	4.63×10 ⁻³	2.38×10 ⁻²	1.69×10 ⁻²
	100L	2.74×10 ⁻²	1.95×10 ⁻²	5.46×10-3	3.87×10-3	2.00×10 ⁻²	4.00×10 ⁻³	2.38×10-2	1.69×10 ⁻²

KAR1 : Equivalent factor in the MA radial direction when one LM block is used

K_{AL1} : Equivalent factor in the M_A reverse radial direction when one LM block is used K_{AR2} : Equivalent factor in the M_A radial direction when two

LM blocks are used in close contact with each other

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other

K_{B2} : M_B Equivalent factor when two LM blocks are used in $\begin{array}{rcl} \mbox{Ker} & : \mbox{Ker} & : \mbox{Equivalent factor in the M_{c} reverse radial direction} \\ \mbox{Kct} & : \mbox{Equivalent factor in the M_{c} reverse radial direction} \end{array}$

LM Guide

 $K_{\mbox{\tiny B1}}$: $M_{\mbox{\tiny B}}$ Equivalent factor when one LM block is used

					Equivale	ent factor			
Model No.		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	Кв1	K _{B2}	K _{cr}	Kcl
	25	11.50×10 ⁻²	9.66×10 ⁻²	2.16×10 ⁻²	18.1×10 ⁻³	10.57×10 ⁻²	1.98×10 ⁻²	9.51×10 ⁻²	7.99×10 ⁻²
	25L	8.85×10 ⁻²	7.44×10 ⁻²	1.79×10 ⁻²	15.0×10 ⁻³	8.14×10 ⁻²	1.64×10 ⁻²	9.51×10 ⁻²	7.99×10 ⁻²
	30	9.58×10 ⁻²	8.05×10 ⁻²	1.83×10 ⁻²	15.3×10 ⁻³	8.81×10 ⁻²	1.68×10 ⁻²	8.40×10 ⁻²	7.05×10 ⁻²
	30L	7.38×10 ⁻²	6.20×10 ⁻²	1.51×10 ⁻²	12.7×10 ⁻³	6.79×10 ⁻²	1.39×10 ⁻²	8.40×10 ⁻²	7.05×10 ⁻²
	35	8.73×10 ⁻²	7.33×10 ⁻²	1.62×10-2	13.6×10 ⁻³	8.03×10 ⁻²	1.49×10 ⁻²	7.04×10 ⁻²	5.91×10 ⁻²
	35L	6.63×10 ⁻²	5.57×10 ⁻²	1.35×10 ⁻²	11.3×10 ⁻³	6.10×10 ⁻²	1.24×10 ⁻²	7.04×10 ⁻²	5.91×10 ⁻²
NRS-X	45	6.78×10 ⁻²	5.69×10 ⁻²	1.30×10 ⁻²	10.9×10 ⁻³	6.23×10 ⁻²	1.19×10 ⁻²	5.22×10 ⁻²	4.39×10 ⁻²
	45L	5.07×10 ⁻²	4.26×10 ⁻²	1.07×10 ⁻²	9.0×10 ⁻³	4.66×10 ⁻²	0.99×10 ⁻²	5.22×10 ⁻²	4.39×10 ⁻²
	55	5.71×10 ⁻²	4.79×10 ⁻²	1.10×10 ⁻²	9.3×10 ⁻³	5.25×10 ⁻²	1.01×10 ⁻²	4.58×10 ⁻²	3.84×10 ⁻²
	55L	4.50×10 ⁻²	3.78×10 ⁻²	0.91×10 ⁻²	7.7×10 ⁻³	4.14×10 ⁻²	0.84×10 ⁻²	4.57×10 ⁻²	3.84×10 ⁻²
	65	4.93×10 ⁻²	4.14×10 ⁻²	0.97×10 ⁻²	8.1×10 ⁻³	4.53×10 ⁻²	0.89×10 ⁻²	3.86×10 ⁻²	3.25×10 ⁻²
	65L	3.54×10 ⁻²	2.97×10 ⁻²	0.75×10 ⁻²	6.3×10 ⁻³	3.25×10 ⁻²	0.69×10 ⁻²	3.86×10 ⁻²	3.25×10 ⁻²
	75	4.05×10 ⁻²		8.01×10 ⁻³		4.05×10 ⁻²	8.01×10 ⁻³	3.20	× 10 ⁻²
	75L	3.032	× 10 ⁻²	6.50×10 ⁻³		3.03×10 ⁻²	6.50×10 ⁻³	3.20	× 10 ⁻²
	85	3.56×10 ⁻²		7.05×10 ⁻³		3.56×10-2	7.05×10-3	2.83	×10 ⁻²
INRS	85L	2.70×10 ⁻²		5.87×10 ⁻³		2.70×10 ⁻²	5.87×10 ⁻³	2.83	× 10 ⁻²
	100	2.93×10 ⁻²		5.97	× 10 ⁻³	2.93×10 ⁻²	5.97×10-3	2.41	×10 ⁻²
	100L	2.652	× 10 ⁻²	5.272	×10 ⁻³	2.65×10 ⁻²	5.27×10 ⁻³	2.41	× 10 ⁻²
	12	2.72×10-1	1.93×10-1	5.16×10 ⁻²	3.65×10 ⁻²	5.47×10 ⁻¹	1.04×10-1	1.40×10-1	9.92×10 ⁻²
	14	2.28×10 ⁻¹	1.61×10 ⁻¹	4.16×10 ⁻²	2.94×10 ⁻²	4.54×10-1	8.28×10 ⁻²	1.01×10-1	7.18×10 ⁻²
	17	1.962	× 10 ⁻¹	3.342	× 10 ⁻²	1.96×10-1	3.34×10 ⁻²	6.30	×10 ⁻²
	21	1.652	× 10 ⁻¹	2.902	× 10 ⁻²	1.65×10-1	2.90×10 ⁻²	5.892	× 10 ⁻²
HRW	27	1.30×10-1		2.342	× 10 ⁻²	1.30×10-1	2.34×10 ⁻²	5.11	< 10 ⁻²
	35	8.692	× 10 ⁻²	1.602	× 10 ⁻²	8.69×10 ⁻²	1.60×10 ⁻²	3.062	× 10 ⁻²
	50	6.522	× 10 ⁻²	1.22×10 ⁻²		6.52×10 ⁻²	1.22×10 ⁻²	2.35	×10 ⁻²
	60	5.802	× 10 ⁻²	1.08×10 ⁻²		5.80×10 ⁻²	1.08×10 ⁻²	1.77	× 10 ⁻²
	2N	6.81	× 10 ⁻¹	1.28×10 ⁻¹		6.81×10 ⁻¹	1.28×10 ⁻¹	8.69	× 10 ⁻¹
	2WN	5.102	× 10 ⁻¹	9.32×10 ⁻²		5.10×10-1	9.32×10 ⁻²	4.54	× 10 ⁻¹
	3M	9.202	×10 ⁻¹	1.27×10 ⁻¹		9.20×10 ⁻¹	1.27×10 ⁻¹	6.06	× 10 ⁻¹
	3N	6.062	×10 ⁻¹	1.01	×10 ⁻¹	6.06×10 ⁻¹	1.01×10 ⁻¹	6.06	× 10 ⁻¹
	3W	7.032	×10 ⁻¹	1.062	×10 ⁻¹	7.03×10 ⁻¹	1.06×10 ⁻¹	3.17	× 10 ⁻¹
	3WN	4.762	×10 ⁻¹	8.27	× 10 ⁻²	4.76×10-1	8.27×10 ⁻²	3.17	× 10 ⁻¹
	9M1K	3.062	× 10-1	5.192	× 10 ⁻²	3.06×10 ⁻¹	5.19×10 ⁻²	2.15	× 10 ⁻¹
	9M1N	2.152	×10 ⁻¹	4.082	×10 ⁻²	2.15×10 ⁻¹	4.08×10 ⁻²	2.15	×10 ⁻¹
RSR	12M1V	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12M1N	2.30×10 ⁻¹	1.61×10-1	4.08×10 ⁻²	2.85×10 ⁻²	1.85×10 ⁻¹	3.25×10 ⁻²	2.09×10-1	1.46×10 ⁻¹
	14WV	2.10×10 ⁻¹	1.47×10-1	3.89×10-2	2.73×10 ⁻²	1.69×10 ⁻¹	3.10×10 ⁻²	8.22×10 ⁻²	5.75×10 ⁻²
	15M1V	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10-1	3.45×10 ⁻²	1.69×10-1	1.18×10 ⁻¹
	15M1N	1.70×10 ⁻¹	1.19×10 ⁻¹	3.24×10 ⁻²	2.27×10 ⁻²	1.37×10 ⁻¹	$2.59 imes 10^{-2}$	1.69×10 ⁻¹	1.18×10 ⁻¹
	15M1WV	1.95×10 ⁻¹	1.36×10-1	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10-1	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	15M1WN	1.34×10 ⁻¹	9.41×10 ⁻²	2.68×10 ⁻²	1.88×10 ⁻²	1.09×10-1	2.16×10 ⁻²	5.82×10 ⁻²	4.08×10 ⁻²
	20M1V	1.68×10 ⁻¹	1.18×10 ⁻¹	2.92×10 ⁻²	2.04×10 ⁻²	1.35×10 ⁻¹	2.32×10 ⁻²	1.30×10 ⁻¹	9.13×10 ⁻²
	20M1N	1.20×10 ⁻¹	8.39×10 ⁻²	2.30×10 ⁻²	1.61×10 ⁻²	9.68×10 ⁻²	1.84×10-2	1.30×10 ⁻¹	9.13×10 ⁻²
KAR1 :	Equivaler	nt factor in the	M ₄ radial dire	ction when on	ie K _{R1}	: M ₈ Equivalen	t factor when	one LM block	is used

Table4 Equivalent Factors (Models NRS-X, NRS, HRW and RSR)

 $K_{\mbox{\tiny AR1}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

 $\begin{array}{l} \label{eq:linear} Lin block is used \\ \end{tabular} \\ \end{tabular} K_{\text{AR2}} : Equivalent factor in the M_{\text{A}} reverse radial direction \\ \end{tabular} \\ \end{tabu$

LM blocks are used in close contact with each other $K_{\scriptscriptstyle AL2}\;$: Equivalent factor in the $M_{\scriptscriptstyle A}$ reverse radial direction when

two LM blocks are used in close contact with each other Almotion B.V. Nijverheidsweg 14 6662 NG Elst (Gld) The Netherlands t+31 (0)85 0491 777 e info@almotion.nl

 K_{B2} : M_{B} Equivalent factor when two LM blocks are used in

Point of Selection

Calculating the Applied Load

Table5 Equivalent Factors (Models HR, GSR, CSR, MX and JR)

Maa					Equivale	lent factor				
IVIOC	iel No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	K _{CL}	
	918	2.65	×10 ⁻¹	3.582	× 10 ⁻²	2.65×10 ⁻¹	3.58×10 ⁻²	—	_	
	1123	2.08	× 10 ⁻¹	3.172	× 10 ⁻²	2.08×10 ⁻¹	3.17×10 ⁻²	—	_	
	1530	1.56	× 10 ⁻¹	2.392	× 10 ⁻²	1.56×10 ⁻¹	2.39×10 ⁻²	—	_	
	2042	1.11	× 10 ⁻¹	1.802	× 10 ⁻²	1.11×10-1	1.80×10 ⁻²	_	_	
	2042T	8.64	× 10 ⁻²	1.532	× 10 ⁻²	8.64×10 ⁻²	1.53×10 ⁻²	—	_	
	2555	7.79	× 10 ⁻²	1.382	× 10 ⁻²	7.79×10 ⁻²	1.38×10 ⁻²	—	—	
	2555T	6.13	× 10 ⁻²	1.17×10 ⁻²		6.13×10 ⁻²	1.17×10 ⁻²	_	_	
	3065	6.92	× 10 ⁻²	1.15×10 ⁻²		6.92×10 ⁻²	1.15×10 ⁻²	_	_	
	3065T	5.45	× 10 ⁻²	9.92×10 ⁻³		5.45×10 ⁻²	9.92×10 ⁻³	_	_	
	3575	6.23×10 ⁻²		1.08×10 ⁻²		6.23×10 ⁻²	1.08×10 ⁻²	—	_	
	3575T	4.90×10 ⁻²		9.42×10 ⁻³		4.90×10 ⁻²	9.42×10 ⁻³	_	_	
	4085	5.19×10 ⁻²		9.53×10 ⁻³		5.19×10 ⁻²	9.53×10 ⁻³	_	_	
	4085T	4.09×10 ⁻²		7.97×10 ⁻³		4.09×10-2	7.97×10-3	_	_	
	50105	4.15×10 ⁻²		7.40×10 ⁻³		4.15×10 ⁻²	7.40×10 ⁻³	_	_	
	50105T	3.27×10 ⁻²		6.262	× 10 ⁻³	3.27×10-2	6.26×10-3	_		
	60125	2.88×10 ⁻²		5.182	×10 ⁻³	2.88×10 ⁻²	5.18×10-3	_	_	
	15T	1.61×10-1	1.44×10-1	2.88×10 ⁻²	2.59×10 ⁻²	1.68×10-1	3.01×10 ⁻²	_		
	15V	2.21×10-1	1.99×10-1	3.54×10-2	3.18×10 ⁻²	2.30×10 ⁻¹	3.68×10-2	_	_	
	20T	1.28×10 ⁻¹	1.16×10 ⁻¹	2.34×10 ⁻²	2.10×10 ⁻²	1.34×10 ⁻¹	2.44×10 ⁻²	_	_	
	20V	1.77×10 ⁻¹	1.59×10 ⁻¹	2.87×10 ⁻²	2.58×10 ⁻²	1.84×10-1	2.99×10 ⁻²	_	_	
GSR	25T	1.07×10 ⁻¹	9.63×10 ⁻²	1.97×10 ⁻²	1.77×10 ⁻²	1.12×10 ⁻¹	2.06×10 ⁻²	_		
	25V	1.47×10 ⁻¹	1.33×10 ⁻¹	2.42×10 ⁻²	2.18×10 ⁻²	1.53×10 ⁻¹	2.52×10 ⁻²	_	_	
	30T	9.17×10 ⁻²	8.26×10 ⁻²	1.68×10-2	1.51×10 ⁻²	9.59×10-2	1.76×10 ⁻²	_	_	
	35T	8.03×10 ⁻²	7.22×10 ⁻²	1.48×10 ⁻²	1.33×10 ⁻²	8.39×10 ⁻²	1.55×10 ⁻²	_	_	
	15	1.66	× 10 ⁻¹	_	_	1.66×10-1	_	1.57	× 10 ⁻¹	
	20S	1.26	× 10 ⁻¹	_		1.26×10 ⁻¹	_	1.17	× 10 ⁻¹	
	20	9.88	× 10 ⁻²	_	_	9.88×10 ⁻²	_	1.17	× 10 ⁻¹	
	25S	1.12	× 10 ⁻¹	_	_	1.12×10-1	_	9.96	× 10 ⁻²	
CSR	25	8.23	× 10 ⁻²	_	_	8.23×10 ⁻²	_	9.96	× 10 ⁻²	
	30S	8.97	× 10 ⁻²	_	_	8.97×10 ⁻²	_	8.24	× 10 ⁻²	
	30	7.05	× 10 ⁻²	_	_	7.05×10 ⁻²	_	8.24	× 10 ⁻²	
	35	6.17	× 10 ⁻²	-	_	6.17×10 ⁻²	_	6.69	× 10 ⁻²	
	45	5.22	× 10 ⁻²	_	_	5.22×10 ⁻²	_	5.20	× 10 ⁻²	
MAX	5	4.27	× 10 ⁻¹	7.012	× 10 ⁻²	4.27×10 ⁻¹	7.01×10 ⁻²	3.85	× 10 ⁻¹	
	7W	2.18	× 10 ⁻¹	4.132	× 10 ⁻²	2.18×10 ⁻¹	4.13×10 ⁻²	1.40	× 10 ⁻¹	
	25	1.12	×10 ⁻¹	2.022	× 10 ⁻²	1.12×10-1	2.02×10 ⁻²	9.96	× 10 ⁻²	
	35	7.85	× 10 ⁻²	1.562	× 10 ⁻²	7.85×10 ⁻²	1.56×10 ⁻²	6.69	× 10 ⁻²	
JK	45	6.73	× 10 ⁻²	1.213	× 10 ⁻²	6.73×10 ⁻²	1.21×10 ⁻²	5.20	× 10 ⁻²	
	55	5.61	× 10 ⁻²	1.032	× 10 ⁻²	5.61×10 ⁻²	1.03×10 ⁻²	4.26	× 10 ⁻²	

 K_{AR1} : Equivalent factor in the M_{A} radial direction when one LM block is used K_{AL1} : Equivalent factor in the M_{A} reverse radial direction

when one LM block is used K_{AR2} : Equivalent factor in the M_{A} radial direction when two LM blocks are used in close contact with each other $K_{\scriptscriptstyle B1}$: $M_{\scriptscriptstyle B}$ Equivalent factor when one LM block is used $K_{\scriptscriptstyle B2}$: $M_{\scriptscriptstyle B}$ Equivalent factor when two LM blocks are used in

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other Almotion B.V. Nijverheidsweg 14 6662 NG Elst (Gld) The Netherlands t+31 (0)85 0491 777 e info@almotion.nl

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

Madal Na				Equivale	ent factor			
Мос	lel No.	K _{AR1}	K _{AL1} K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	K _{CR}	Kcl
	20TBC	2.29×1	0-1 2.	58×10 ^{-₂}	2.29×10 ⁻¹	2.68×10 ⁻²	_	_
	25TBC	2.01×1	0-1 2.	27×10 ⁻²	2.01×10 ⁻¹	2.27×10 ⁻²	_	_
	30TBC	1.85×1	0-1 1.	93×10 ⁻²	1.85×10-1	1.93×10-2	_	_
NSR	40TBC	1.39×1	0-1 1.	60×10 ⁻²	1.39×10-1	1.60×10 ⁻²	_	_
	50TBC	1.24×1	0-1 1.	42×10 ⁻²	1.24×10-1	1.42×10-2	_	_
	70TBC	9.99×1	0-2 1.	15×10 ⁻²	9.99×10-2	1.15×10 ⁻²	—	_
	15	1.23×1	0-1 2.	2.07×10 ⁻²		2.07×10 ⁻²	1.04	×10 ⁻¹
	20	9.60×1	0-2 1.	71×10 ⁻²	9.60×10 ⁻²	1.71×10 ⁻²	8.00	×10 ⁻²
	20L	7.21×1	0-2 1.	42×10 ⁻²	7.21×10 ⁻²	1.42×10 ⁻²	8.00	×10 ⁻²
	25	8.96×1	0-2 1.	55×10 ^{-₂}	8.96×10 ⁻²	1.55×10 ⁻²	7.23	×10 ⁻²
	25L	6.99×10	0-2 1.	31×10 ^{-₂}	6.99×10 ⁻²	1.31×10 ⁻²	7.23	×10 ⁻²
	30	8.06×1	0-2 1.	33×10 ⁻²	8.06×10 ⁻²	1.33×10 ⁻²	5.61	×10 ⁻²
	30L	6.12×1	0-2 1.	11×10 ⁻²	6.12×10 ⁻²	1.11×10 ⁻²	5.61	×10 ⁻²
	35	7.14×1	0 ⁻² 1.	18×10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.98	×10 ⁻²
	35L	5.26×1	0-2 9.	67×10⁻³	5.26×10 ⁻²	9.67×10 ⁻³	4.98	×10 ⁻²
	35SL	4.40×10	0-2 8.	34×10⁻³	4.40×10 ⁻²	8.34×10 ⁻³	4.98	×10 ⁻²
SRG	45	5.49×10	0-2 9.	58×10⁻³	5.49×10 ⁻²	9.58×10 ⁻³	3.85	×10 ⁻²
	45L	4.18×10	0 ⁻² 7.	93×10 ^{-₃}	4.18×10 ⁻²	7.93×10 ⁻³	3.85	×10 ⁻²
	45SL	3.28×10	0 ⁻² 6.	56×10 ⁻³	3.28×10 ⁻²	6.56×10 ⁻³	3.85	×10 ⁻²
	55	4.56×10	0-2 8.	04×10⁻³	4.56×10 ⁻²	8.04×10 ⁻³	3.25	×10 ⁻²
	55L	3.37×1	0-2 6.	42×10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	3.25	×10 ⁻²
	55SL	2.56×1	0-2 5.	22×10 ⁻³	2.56×10 ⁻²	5.22×10 ⁻³	3.25	×10 ⁻²
	65	3.54×10	0 ⁻² 6.	06×10⁻³	3.54×10 ⁻²	6.06×10 ⁻³	2.70	×10 ⁻²
	65L	2.63×1	0-2 4.	97×10⁻³	2.63×10 ⁻²	4.97×10 ⁻³	2.70	×10 ⁻²
	65SL	1.97×10	0-2 4.	01×10⁻³	1.97×10 ⁻²	4.01×10 ⁻³	2.70	×10 ⁻²
	85LC	2.19×1	0 ⁻² 4.	15×10 ⁻³	2.19×10 ⁻²	4.15×10 ⁻³	1.91	×10 ⁻²
	100LC	1.95×1	0-2 3.	67×10⁻³	1.95×10 ⁻²	3.67×10 ⁻³	1.62	×10 ⁻²
	35	7.14×1	0-2 1.	18×10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.98	×10 ⁻²
	35L	5.26×1	0-2 9.	67×10⁻³	5.26×10 ⁻²	9.67×10 ⁻³	4.98	×10 ⁻²
	45	5.49×1	0-2 9.	58×10 ⁻³	5.49×10 ⁻²	9.58×10 ⁻³	3.85	×10 ⁻²
SRN	45L	4.18×1	0 ⁻² 7.	93×10 ⁻³	4.18×10 ⁻²	7.93×10 ⁻³	3.85	×10 ⁻²
	55	4.56×1	0-2 8.	04×10⁻³	4.56×10 ⁻²	8.04×10 ⁻³	3.25	×10 ⁻²
	55L	3.37×1	0 ⁻² 6.	42×10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	3.25	×10 ⁻²
	65L	2.63×1	0-2 4.	97×10⁻³	2.63×10 ⁻²	4.97×10 ⁻³	2.70	×10 ⁻²
	70	4.18×1	0-2 7.	93×10 ⁻³	4.18×10 ⁻²	7.93×10 ⁻³	2.52	×10 ⁻²
	85	3.37×1	0-2 6.	42×10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	2.09	×10 ⁻²
SRW	100	2.63×1	0 ⁻² 4.	97×10⁻³	2.63×10 ⁻²	4.97×10 ⁻³	1.77	×10 ⁻²
	130	2.19×1	0 ⁻² 4.	15×10 ^{-₃}	2.19×10 ⁻²	4.15×10 ⁻³	1.33	×10 ⁻²
	150	1.95×10	0-2 3.	67×10⁻³	1.95×10 ⁻²	3.67×10 ⁻³	1.15	×10 ⁻²

Table& Equivalent Factors (Medal NCD, CDC, CDN and CDM)

 $K_{\tt B1}$: $M_{\tt B}$ Equivalent factor when one LM block is used $K_{\tt B2}$: $M_{\tt B}$ Equivalent factor when two LM blocks are used in

 Kara : Equivalent factor in the Maradial direction when two LM blocks are used in close contact with each other
 Kara : Equivalent factor in the Maradial direction when two LM blocks are used in close contact with each other

 $\begin{array}{rcl} \mbox{Kes} & \mbox{Kes$

www.almotion.nl www.linearmotion.nl www.lineairegeleiding.nl

Point of Selection

Calculating the Applied Load

[Double-axis Use]

• Setting Conditions

Set the conditions needed to calculate the LM system's applied load and service life in hours. The conditions consist of the following items.

- (1) Mass: m (kg)
- (2) Direction of the working load
- (3) Position of the working point (e.g., center of gravity): ℓ_2 , ℓ_3 , $h_1(mm)$
- (4) Thrust position: ℓ_4 , $h_2(mm)$
- (5) LM system arrangement: *l*₀, *l*₁(mm) (No. of units and axes)

(6) Velocity diagram
 Speed: V (mm/s)
 Time constant: t_n (s)
 Acceleration: α_n(mm/s²)

$$(\alpha_n = \frac{V}{t_n})$$

(7) Duty cycle

Number of reciprocations per minute: N1(min-1)

- (8) Stroke length: $\ell_s(mm)$
- (9) Average speed: $V_m(m/s)$
- (10) Required service life in hours: $L_h(h)$

Gravitational acceleration g=9.8 (m/s²)

Fig.6 Condition

The load applied to the LM Guide varies with the external force, such as the position of the gravity center of an object, thrust position, inertia generated from acceleration/deceleration during start or stop, and cutting force.

In selecting an LM Guide, it is necessary to obtain the value of the applied load while taking into account these conditions.

Calculate the load applied to the LM Guide in each of the examples 1 to 10 shown below.

m	: Mass	(kg)
ℓ_n	: Distance	(mm)
Fn	: External force	(N)
Pn	: Applied load (radial/reverse radial direction)	(N)
\mathbf{P}_{nT}	: Applied load (lateral directions)	(N)
g	: Gravitational acceleration	(m/s²)
	(g =9.8m/s ²)	
V	: Speed	(m/s)
tn	: Time constant	(s)
αn	: Acceleration	(m/s²)

$$(\alpha_n = \frac{V}{t_n})$$

[Example]

	Condition	Applied Load Equation
1	Horizontal mount (with the block traveling) Uniform motion or dwell	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
2	Horizontal mount, overhung (with the block traveling) Uniform motion or dwell Pather Pather P	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$

Note) Load is positive in the direction of the arrow.

Point of Selection

Calculating the Applied Load

Note) Load is positive in the direction of the arrow.

Note) Load is positive in the direction of the arrow.

A1-54

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.almotion.nl | www.linearmotion.nl | www.lineairegeleiding.nl

Point of Selection

Calculating the Applied Load

Note) Load is positive in the direction of the arrow.

Note) Load is positive in the direction of the arrow.

Point of Selection

Calculating the Equivalent Load

Calculating the Equivalent Load

Rated Load of an LM Guide in Each Direction

The LM Guide is categorized into roughly two types: the 4-way equal load type, which has the same rated load in the radial, reverse radial and lateral directions, and the radial type, which has a large rated load in the radial direction. With the radial type LM Guide, the rated load in the radial direction is different from that in the reverse radial and lateral directions. The basic load rating in the radial directions are obtained from Table7 on **⊠1-58**.

[Rated Loads in All Directions]

Table7	Rated	I oads	in All	Directions
i abici	i tutou	Loudo		Directionic

			Reverse radial direction		Lateral directions	
Classification		Model No.	P			
	Туре	Size	Dynamic load rating C⊾	Static load rating C₀⊾	Dynamic load rating C _⊺	Static load rating C₀⊤
	SHS		С	C₀	С	C₀
	SHW		С	Co	С	C ₀
	SRS	12,15,25	С	C ₀	С	C ₀
	SCR		С	C ₀	С	C ₀
	EPF		С	C₀	C	C₀
	HSR		С	C₀	С	C₀
	NRS	75,85,100	С	C ₀	С	C₀
	HRW	17,21,27,35,50,60	С	C ₀	С	C ₀
	RSR	2,3	С	C ₀	С	C₀
	CSR		С	C ₀	С	C₀
4-way Equal	MX		С	C ₀	С	C ₀
Load	JR		С	C ₀	С	C ₀
	HCR		С	C₀	С	C₀
	HMG		С	C₀	С	C₀
	HSR-M1		С	C₀	С	C₀
	RSR-M1	9	С	C₀	С	C₀
	HSR-M2		С	C₀	С	C₀
	HSR-M1VV		С	C ₀	С	C ₀
	SRG		С	C ₀	С	C ₀
	SRN		С	C ₀	С	C ₀
	SRW		С	C ₀	С	C ₀
	SSR		0.50C	0.50C ₀	0.53C	0.43C ₀
	SVR		0.64C	0.64C ₀	0.47C	0.38C ₀
	SR	15,20,25,30,35,45,55,70	0.62C	0.50C ₀	0.56C	0.43C ₀
	SR	85,100,120,150	0.78C	0.71C ₀	0.48C	0.35C ₀
Destist	NR-X		0.64C	0.64C ₀	0.47C	0.38C ₀
Radiai	NR	75,85,100	0.78C	0.71C ₀	0.48C	0.45C ₀
	HRW	12,14	0.78C	0.71C ₀	0.48C	0.35C ₀
	NSR		0.62C	0.50C ₀	0.56C	0.43C ₀
	SR-M1		0.62C	0.50C ₀	0.56C	0.43C ₀
	SR-MS		_	0.50F ₀		0.43F₀
	SVS		0.84C	0.84C ₀	0.92C	0.85C ₀
	NRS-X		0.84C	0.84C ₀	0.92C	0.85C ₀
	SRS	5,7,9,20	С	C ₀	1.19C	1.19C₀
	RSR	14	0.78C	0.70C ₀	0.78C	0.71C₀
Other	HR		С	Co	С	C ₀
Other	GSR		0.93C	0.90C ₀	(T) 0.84C* (C) 0.93C*	(T) 0.78C₀* (C) 0.90C₀*
	GSR-R		0.93C	0.90C ₀	(T) 0.84C* (C) 0.93C*	(T) 0.78C ₀ * (C) 0.90C ₀ *
	RSR-M1	12,15,20	0.78C	0.70C ₀	0.78C	0.71C ₀

*(T): Tensile lateral direction; (C): Compressive lateral direction Note) C and C₀ in the table each represent the basic load rating indicated in the specification table of the respective model. For represents the permissible load. For types with no size indication in the table, the same factor is applied to all sizes. Models HR, GSR and GSR-R cannot be used in single-axis applications.

Compressive lateral direction

Point of Selection

Calculating the Equivalent Load

[Equivalent Load P_E]

The LM Guide can bear loads and moments in all directions, including a radial load (PR), reverse radial load (PL) and lateral loads (PT), simultaneously.

When two or more loads (e.g., radial load and lateral load) are simultaneously applied to the LM Guide, the service life and the static safety factor are calculated using equivalent load values obtained by converting all the loads into radial load or reverse radial load.

[Equivalent Load Equation]

When the LM block of the LM Guide receives loads simultaneously in the radial and lateral directions, or the reverse radial and lateral directions, the equivalent load is obtained from the equation below

$\mathbf{P}_{\mathrm{E}} = \mathbf{X} \cdot \mathbf{P}_{\mathrm{R}(\mathrm{L})} + \mathbf{Y} \cdot \mathbf{P}_{\mathrm{T}}$

PE	: Equivalent load	(N)
	·Radial direction	
	·Reverse radial direct	ion
P∟	: Reverse radial load	(N)
Pτ	: Lateral load	(N)
ХΥ	· Equivalent factor	(see Table8)

Fig.7 Equivalent of Load of the LM Guide

LM Guide

Table8 Equivalent factor in each direction

	Madal Na		If radial and lateral loads are applied simultaneously		If reverse-radial and lateral loads are applied simultaneously	
Classification			Equiva radial d	alent in irection	Equivalent in reverse radial direction	
	Туре	Size	Х	Y	Х	Y
	SHS		1.000	1.000	1.000	1.000
	SHW		1.000	1.000	1.000	1.000
	SRS	12,15,25	1.000	1.000	1.000	1.000
	SCR		1.000	1.000	1.000	1.000
	EPF		1.000	1.000	1.000	1.000
	HSR		1.000	1.000	1.000	1.000
	NRS	75,85,100	1.000	1.000	1.000	1.000
	HRW	17,21,27,35,50,60	1.000	1.000	1.000	1.000
	RSR	2,3	1.000	1.000	1.000	1.000
	CSR		1.000	1.000	1.000	1.000
4-way Equal	MX		1.000	1.000	1.000	1.000
LUau	JR		1.000	1.000	1.000	1.000
	HCR		1.000	1.000	1.000	1.000
	HMG		1.000	1.000	1.000	1.000
	HSR-M1		1.000	1.000	1.000	1.000
	RSR-M1	9	1.000	1.000	1.000	1.000
	HSR-M2		1.000	1.000	1.000	1.000
	HSR-M1VV		1.000	1.000	1.000	1.000
	SRG		1.000	1.000	1.000	1.000
	SRN		1.000	1.000	1.000	1.000
	SRW		1.000	1.000	1.000	1.000
	SSR		_	—	1.000	1.155
	SVR		_	—	1.000	1.678
	SR	15,20,25,30,35,45,55,70	_	—	1.000	1.155
	SR	85,100,120,150	_	_	1.000	2.000
Padial	NR-X		—	—	1.000	1.678
Raulai	NR	75,85,100	_	—	1.000	2.000
	HRW	12,14	_	—	1.000	2.000
	NSR		—	_	1.000	1.155
	SR-M1		—	—	1.000	1.155
	SR-MS		—	—	1.000	1.155
	SVS		1.000	0.935	1.000	1.020
	NRS-X		1.000	0.935	1.000	1.020
	SRS	5,7,9,20	1.000	0.839	1.000	0.839
Other	RSR	14	1.000	0.830	1.000	0.990
	HR		1.000	0.500	1.000	0.500
	GSR		1.000	1.280	1.000	1.000
	GSR-R		1.000	1.280	1.000	1.280
	RSR-M1	12,15,20	1.000	0.830	1.000	0.990

Note) If the radial type LM Guide receives radial and lateral loads simultaneously, study the safety static factor and the rated load in the radial-load and lateral-load directions. For types with no size indication in the table, the same factor is applied to all sizes. Models HR, GSR and GSR-R cannot be used in single-axis applications.

Calculating the Static Safety Factor

Calculating the Static Safety Factor

To calculate a load applied to the LM Guide, the average load required for calculating the service life and the maximum load needed for calculating the static safety factor must be obtained first. In a system subject to frequent starts and stops, placed under cutting forces or under a large moment caused by an overhang load, an excessively large load may apply to the LM Guide. When selecting a model number, make sure that the desired model is capable of receiving the required maximum load (whether stationary or in motion). Table9 shows reference values for the static safety factor.

Table9 Reference Values for the Static Safety Factor (fs)			
Machine using the LM Guide Load conditions		Lower limit of fs	
Conoral industrial machinery	Without vibration or impact	1.0 to 3.5	
General industrial machinery	With vibration or impact	2.0 to 5.0	
Machina tool	Without vibration or impact	1.0 to 4.0	
	With vibration or impact	2.5 to 7.0	

When the radial load is large	fн•fr•fc•C₀ P _R ≧fs
When the reverse radial load is large	 PL ≧fs
When the lateral loads are large	<u>fн•fт•fс•Coт</u> Рт ≧fs

fs : Static safety factor

C	: Basic static load rating	
	(radial direction)	(N)
C_{OL}	: Basic static load rating	
	(reverse-radial direction)	(N)
C_{OT}	: Basic static load rating	
	(lateral direction)	(N)
Pr	: Calculated load (radial direction)	(N)
P∟	: Calculated load	
	(reverse-radial direction)	(N)
Pτ	: Calculated load (lateral direction)	(N)

- f_{H} : Hardness factor (see Fig.8 on **A1-66**)
- f_T : Temperature factor (see Fig.9 on **Δ1-66**)
- fc : Contact factor (see Table10 on **1-66**)

Calculating the Average Load

In cases where the load applied to each LM block fluctuates under different conditions, such as an industrial robot holding a work with its arm as it advances and receding with its arm empty, and a machine tool handling various workpieces, it is necessary to calculate the service life of the LM Block while taking into account such fluctuating loading conditions.

The average load (P_m) is the load under which the service life of the LM Guide is equivalent to that under varying loads applied to the LM blocks.

$$\mathbf{P}_{m} = \sqrt{\frac{1}{\mathbf{L}} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{i} \cdot \mathbf{L}_{n})}$$

P_m : Average Load (N)

Pn : Varying load (N)

L : Total travel distance (mm)

L_n : Distance traveled under load P_n

(mm)

i : Constant determined by rolling element

Note) The above equation or the equation (1) below applies when the rolling elements are balls. (1) When the load fluctuates stepwise

Total travel distance (L)

Point of Selection

Calculating the Average Load

- . . .
- (2) When the load fluctuates monotonically

Calculating the Nominal Life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the nominal life defined below as a reference value for obtaining the service life of the LM Guide. The nominal life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like pieces on the metal surface) after individually running under the same conditions.

Calculating the Nominal Life

The nominal life (L₁₀) is to be calculated by using the basic dynamic load rating (C) and the calculated load acting on the LM Guide (Pc) according to the following formulas, which are to be based on a nominal life of 50 km in case of an LM Guide with balls, or 100 km in case of an LM Guide with rollers

LM Guide with balls (Using a basic dynamic load rating that will result in a nominal life of 50 km)

С

- L₁₀ : Nominal life (km) : Basic dynamic load rating (N)
- Pc : Calculated load (N)
- LM Guide with rollers (Using a basic dynamic load rating that will result in a nominal life of 100 km)

$$\mathbf{L}_{10} = \left(\frac{\mathbf{C}}{\mathbf{P}_{c}}\right)^{\frac{10}{3}} \times 100 \quad \dots \quad (2)$$

*These nominal life formulas may not apply if the length of the stroke is less than or equal to twice the length of the LM block.

When comparing the nominal life (L_{10}), you must take into account whether the basic dynamic load rating was defined based on 50 km or 100 km. Convert the basic dynamic load rating based on ISO 14728-1 as necessary.

ISO-regulated basic dynamic load rating conversion formulas:

LM Guide with balls

$$C_{100} = \frac{C_{50}}{1.26}$$

- C_{50} : Basic dynamic load rating such that the nominal life will be 50 km
- C₁₀₀ : Basic dynamic load rating such that the nominal life will be 100 km

· LM Guide with rollers

$$C_{100} = \frac{C_{50}}{1.23}$$

Point of Selection

Calculating the Nominal Life

Calculating the Nominal Life Accounting for Usage Conditions

During use, an LM Guide may be subjected to vibrations and shocks as well as fluctuating loads, which are difficult to detect. In addition, the surface hardness of the raceways, the operating temperature, and having LM blocks arranged directly behind one another will have a decisive impact on the service life. Taking these factors into account, the modified nominal life (L_{10m}) can be calculated according to the following formulas (3) and (4).

f⊤

fc

• Modified factor α

$$\alpha = \frac{\mathbf{f}_{\mathsf{H}} \cdot \mathbf{f}_{\mathsf{T}} \cdot \mathbf{f}_{\mathsf{c}}}{\mathbf{f}_{\mathsf{w}}}$$

- α : Modified factor
- f_H : Hardness factor

· Contact factor

- (see Fig.8 on **▲1-66**) : Temperature factor
 - (see Fig.9 on **Δ1-66**)
 - (see Table10 on **Δ1-66**)
- fw : Load factor
- (see Table11 on **Δ1-67**)

- Modified nominal life L_{10m}
 - · LM Guide with balls

$$\mathbf{L}_{10m} = \left(\alpha \times \frac{\mathbf{C}}{\mathbf{P}_{c}} \right)^{3} \times 50 \dots (3)$$

· LM Guide with rollers

$$\mathbf{L}_{10m} = \left(\alpha \times \frac{\mathbf{C}}{\mathbf{P}_{c}} \right)^{\frac{10}{3}} \times 100 \cdots (4)$$

L _{10m}	: Modified nominal life	(km)
С	: Basic dynamic load rating	(N)
Pc	: Calculated load	(N)

Once the nominal life (L_{10}) has been obtained, the service life time can be obtained using the following equation if the stroke length and the number reciprocations are constant.

$L_{h} = \frac{L_{10} \times 10^{6}}{2 \times \ell_{s} \times n_{1} \times 60}$

- Lh : Service life time
- ℓ_s : Stroke length
- n₁ : Number of reciprocations per minute

(min⁻¹)

(mm)

(h)

LM Guide

[f_H: Hardness Factor]

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor ($f_{\rm H}$).

Since the LM Guide has sufficient hardness, the $f_{\rm H}$ value for the LM Guide is normally 1.0 unless otherwise specified.

[f_T:Temperature Factor]

If the temperature of the environment surrounding the operating LM Guide exceeds 100°C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.9.

In addition, the selected LM Guide must also be of a high temperature type.

Note) LM guides not designed to withstand high temperatures should be used at 80°C or less Please contact THK if application requirements exceed 80°C.

[fc: Contact Factor]

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or C_0) by the corresponding contact factor indicated in Table10.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table10.

Toble10	Contact	Contor	(f)
Table TU	Contact	Factor	$(I_{\rm C})$

Number of blocks used in close contact	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
6 or more	0.6
Normal use	1

Point of Selection

Calculating the Nominal Life

[fw: Load Factor]

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table11, which contains empirically obtained data.

Table11 Load Factor (fw) Vibrations/ Speed (V) fw impact Very low Faint 1 to 1.2 V≦0.25m/s low Weak 1 2 to 1 5 0.25<V≦1m/s Medium Medium 1.5 to 2 1<V≦2m/s High Strong 2 to 3.5 V>2m/s

512E'

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t+31 (0)85 0491 777 e info@almotion.nl www.lineairregeleiding.nl

Predicting the Rigidity

Selecting a Radial Clearance (Preload)

Since the radial clearance of an LM Guide greatly affects the running accuracy, load carrying capacity and rigidity of the LM Guide, it is important to select an appropriate clearance according to the application. In general, selecting a negative clearance (i.e., a preload* is applied) while taking into account possible vibrations and impact generated from reciprocating motion favorably affects the service life and the accuracy.

For specific radial clearances, contact THK. We will help you select the optimal clearance according to the conditions.

The clearances of all LM Guide models (except model HR, GSR and GSR-R, which are separate types) are adjusted as specified before shipment, and therefore they do not need further preload adjustment.

*Preload is an internal load applied to the rolling elements (balls, rollers, etc.) of an LM block in advance in order to increase its rigidity.

	Normal Clearance	Clearance C1 (Light Preload)	Clearance C0 (Medium Preload)
Condition	 The loading direction is fixed, impact and vibrations are mini- mal and 2 rails are installed in parallel. Very high precision is not required, and the sliding resis- tance must be as low as pos- sible. 	 An overhang load or moment load is applied. LM Guide is used in a single- rail configuration. Light load and high accuracy are required. 	 High rigidity is required and vibrations and impact are applied. Heavy-cutting machine tool
Examples of applications	 Beam-welding machine Book-binding machin Automatic packaging machine XY axes of general industrial machinery Automatic sash-manufacturing machine Welding machine Flame cutting machine Tool changer Various kinds of material feeder 	 Grinding machine table feed axis Automatic coating machine Industrial robot various kinds of material high speed feeder NC drilling machine Vertical axis of general industrial machinery Printed circuit board drilling machine Electric discharge machine Measuring instrument Precision XY table 	 Machining center NC lathe Grinding stone feed axis of grinding machine Milling machine Vertical/horizontal boring machine Tool rest guide Vertical axis of machine tool

Table12 Types of Radial Clearance

Point of Selection

Predicting the Rigidity

Service Life with a Preload Considered

When using an LM Guide under a medium preload (clearance C0), it is necessary to calculate the service life while taking into account the magnitude of the preload.

To identify the appropriate preload for any selected LM Guide model, contact THK.

Rigidity

When a load is applied to an LM Guide, the bearings and LM block will elastically deform within the allowable load range. The ratio of displacement to applied load is referred to as "rigidity." The radial internal clearance (preload) for the LM Guide can be specified in order to reduce displacement.

By using balls larger than the width of the race, they will naturally deform elastically as they roll, allowing the load to be maintained for longer while limiting displacement in the LM Guide.

The effect of the preload can be up to 2.8 times greater than the size of the preload itself. If that level is exceeded, the preload is released and the effect of the preload is lost.

When a preloaded LM Guide takes an external load, the displacement will be linear. The level of displacement will be approximately half that of an LM Guide with no preload.

The preload, in addition to reducing displacement, helps prevent premature failure due to vibration and impact/shock.

$K = \frac{P}{\delta}$

K	: Rigidity value	(N/μm)
δ	: Deflection	(μ m)
Р	: Calculated load	(N)

LM Guide

A1-69

Radial Clearance Standard for Each Model

			Unit: µm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-5 to 0	–12 to –5	_
20	-6 to 0	-12 to -6	-18 to -12
25	-8 to 0	-14 to -8	-20 to -14
30	–9 to 0	-17 to -9	–27 to –17
35	-11 to 0	–19 to –11	–29 to –19
45	-12 to 0	-22 to -12	-32 to -22
55	-15 to 0	–28 to –16	–38 to –28
65	-18 to 0	-34 to -22	-45 to -34

[Radial clearances for models SHS and SCR]

[Radial clearance for model SSR]

Unit: μn				
Indication symbol	Normal	Light preload		
Model No.	No Symbol	C1		
15	-4 to +2	-10 to -4		
20	-5 to +2	-12 to -5		
25	-6 to +3	-15 to -6		
30	-7 to +4	-18 to -7		
35	-8 to +4	-20 to -8		

[Radial clearance for models SVR/SVS, NR/ NRS-X and NR/NRS]

Unit: µm

Unit[.] um

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
25	-3 to +2	-6 to -3	–9 to –6
30	-4 to +2	-8 to -4	–12 to –8
35	-4 to +2	-8 to -4	–12 to –8
45	-5 to +3	–10 to –5	-15 to -10
55	-6 to +3	-11 to -6	–16 to –11
65	-8 to +3	-14 to -8	-20 to -14
75	-10 to +4	-17 to -10	–24 to –17
85	-13 to +4	-20 to -13	-27 to -20
100	-14 to +4	-24 to -14	-34 to -24

[Radial clearance for model SHW]

			1.
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
12	–1.5 to 0	-4 to -1	—
14	-2 to 0	–5 to –1	—
17	-3 to 0	-7 to -3	—
21	-4 to +2	8 to4	—
27	-5 to +2	–11 to –5	—
35	-8 to +4	-18 to -8	-28 to -18
50	-10 to +5	-24 to -10	-38 to -24

[Radial clearance for model SRS]

		p.
Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
15	-5 to +5	-10 to 0
20	-5 to +5	-10 to 0
25	-7 to +7	-14 to 0

A1-70

Unit: um

Point of Selection

Predicting the Rigidity

[Radial clearance for models HSR, CSR, HSR-M1 and HSR-M1VV]

Unit: um Indication Light Medium Normal symbol preload preload Model No. C1 C0 No Symbol 8 -1 to +1 -4 to -1 _ 10 -2 to +2 -5 to -1 _ 12 -3 to +3 -6 to -2 _ 15 -4 to +2 -12 to -4 20 -5 to +2 -14 to -5 -23 to -14 25 -6 to +3 -16 to -6 -26 to -16 30 -7 to +4 -19 to -7 -31 to -19 35 -8 to +4 -22 to -8 -35 to -22

	-		Unit: μm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
45	-10 to +5	–25 to –10	-40 to -25
55	-12 to +5	-29 to -12	-46 to -29
65	-14 to +7	-32 to -14	-50 to -32
85	-16 to +8	-36 to -16	-56 to -36
100	-19 to +9	-42 to -19	-65 to -42
120	-21 to +10	-47 to -21	–73 to –47
150	-23 to +11	–51 to –23	–79 to –51

[Radial clearances for models SR and SR-M1]

			Unit: µm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-4 to +2	-10 to -4	—
20	-5 to +2	–12 to –5	-17 to -12
25	-6 to +3	–15 to –6	-21 to -15
30	-7 to +4	–18 to –7	-26 to -18
35	-8 to +4	–20 to –8	-31 to -20
45	-10 to +5	-24 to -10	-36 to -24
55	-12 to +5	-28 to -12	-45 to -28
70	-14 to +7	-32 to -14	-50 to -32
85	-20 to +9	-46 to -20	-70 to -46
100	-22 to +10	-52 to -22	-78 to -52
120	-25 to +12	-57 to -25	-87 to -57
150	-29 to +14	-69 to -29	-104 to -69

[Radial clearance for model HRW]

			υπι. μπ
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
12	-1.5 to +1.5	_4 to −1	_
14	-2 to +2	−5 to −1	_
17	-3 to +2	-7 to -3	-
21	-4 to +2	8 to4	—
27	-5 to +2	–11 to –5	_
35	-8 to +4	-18 to -8	-28 to -18
50	-10 to +5	-24 to -10	–38 to –24
60	-12 to +5	-27 to -12	-42 to -27

[Radial clearance for models RSR, RSR-W and RSR-M1]

		Οπι. μπ
Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
2	0 to +4	—
3	0 to +1	–0.5 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
14	–5 to +5	-10 to 0
15	-5 to +5	-10 to 0
20	-7 to +7	-14 to 0

[Radial clearance for model MX]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0

LM Guide

[Radial clearance for model JR]

Unit:	um

Indication symbol	Normal
Model No.	No Symbol
25	0 to +30
35	0 to +30
45	0 to +50
55	0 to +50

[Radial clearances for models HCR and HMG] Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
12	-3 to +3	−6 to −2
15	-4 to +2	-12 to -4
25	-6 to +3	–16 to –6
35	-8 to +4	–22 to –8
45	-10 to +5	-25 to -10
65	-14 to +7	–32 to –14

[Radial clearance for model NSR-TBC]

			σπι. μπ
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
20	-5 to +5	–15 to –5	–25 to –15
25	-5 to +5	–15 to –5	–25 to –15
30	-5 to +5	–15 to –5	–25 to –15
40	40 -8 to +8		-36 to -22
50 -8 to +8		–22 to –8	-36 to -22
70	-10 to +10	-26 to -10	-42 to -26

[Radial clearances for models SRG and SRN] Unit: um

			erna pari
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-0.5 to 0	–1 to –0.5	-2 to -1
20	-0.8 to 0	-2 to -0.8	-3 to -2
25	-2 to -1	-3 to -2	-4 to -3
30	-2 to -1	-3 to -2	-4 to -3
35	-2 to -1	-3 to -2	-5 to -3
45	-2 to -1	-3 to -2	-5 to -3
55	-2 to -1	-4 to -2	-6 to -4
65	-3 to -1	–5 to –3	–8 to –5
85	-3 to -1	-7 to -3	-12 to -7
100	-3 to -1	8 to3	–13 to –8

[Radial clearance for model EPF]

Indication symbol	Normal
Model No.	No Symbol
7M	
9M	0 ar laga
12M	0 of less
15M	

[Radial clearance for model HSR-M2]

Unit	tп	m
•••••	. µ	•••

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
15	-4 to +2	-12 to -4
20	-5 to +2	–14 to –5
25	-6 to +3	–16 to –6

[Radial clearance for model SRW]

			Unit: µm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
70	−2 to −1	-3 to -2	–5 to –3
85	-2 to -1	_4 to _2	6 to4
100	-3 to -1	−5 to −3	–8 to –5
130	-3 to -1	-7 to -3	-12 to -7
150	-3 to -1	-8 to -3	–13 to –8

[Radial Clearance for the Oil-Free LM Guide Model SR-MS] Unit: um

	÷
Indication symbol	Clearance CS
Model No.	Clearance CS
15	-2 to +1
20	-2 to +1

Unit: um

Point of Selection

Determining the Accuracy

Determining the Accuracy

Accuracy Standards

Accuracy of the LM Guide is specified in terms of running parallelism, dimensional tolerance for height and width, and height and width difference between a pair when 2 or more LM blocks are used on one rail or when 2 or more rails are mounted on the same plane. For details, see "Accuracy Standard for Each Model" on **M1-75** to **M1-85**.

[Running of Parallelism]

It refers to the tolerance for parallelism between the LM block and the LM rail reference surface when the LM block travels the whole length of the LM rail with the LM rail secured on the reference reference surface using bolts.

Fig.11 Running of Parallelism

[Difference in Height M]

Indicates a difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

[Difference in Width W₂]

Indicates a difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Note 1) When two or more rails are used on the same plane in parallel, only the width (W₂) variation and dimensional tolerance of the master rail apply. Master LM rails will have a serial number ending with "KB" printed on them. However, this is not the case for standard grade products.

Fig.12 Master LM Rail (E.g. Model HSR-A)

Note 2) Accuracy measurements each represent the average value of the central point or the central area of the LM block. Note 3) If it is mounted on a less rigid base such as an aluminum base, the curve of the rail will affect the accuracy of the machine. Therefore, it is necessary to define straightness of the rail in advance. LM Guide

Guidelines for Accuracy Grades by Machine Type

Table13 shows guidelines for selecting an accuracy grade of the LM Guide according to the machine type.

		Accuracy grades				
	Type of machine	Normal	Н	Р	SP	UP
	Machining center				•	
	Lathe					
	Milling machine					
	Boring machine					
equipment Bemiconductor manufacturing robot D X D D 원 국 고 파 파 스 O O D S	Jig borer				•	
	Grinding machine				•	•
0	Electric discharge machine				•	•
le to	Punching press		٠			
chir	Laser beam machine		•		•	
Ma	Woodworking machine					
	NC drilling machine		٠			
	Tapping center					
	Palette changer					
	ATC					
	Wire cutting machine				•	
	Dressing machine				•	٠
strial oot	Cartesian coordinate	•	٠			
Industrial robot	Cylindrical coordinate		•			
Jg .	Wire bonding machine					
ducto	Prober					
ipr	Electronic component inserter		•			
Other equipment Conductor Industrial Machine tool Machine tool	Printed circuit board drilling machine		٠	•	•	
	Injection molding machine		•			
	3D measuring instrument				•	٠
t t	Office equipment		•			
ner	Conveyance system		•			
uipi	XY table		•		•	
Leo	Coating machine					
othe	Welding machine					
0	Medical equipment					
	Digitizer		•			
	Inspection equipment					

Table13 Guideline for Accuracy Grades by Machine Type

Normal : Normal grade H : High accuracy grade P : Precision grade

SP : Super precision grade UP : Ultra precision grade

Point of Selection

Determining the Accuracy

Accuracy Standard for Each Model

Accuracies of models SHS, SSR, SVR/SVS, SHW, HSR, SR, NR/NRS-X, NR/NRS, HRW, NSR-TBC, HSR-M1, HSR-M1VV, SR-M1, HSR-M2, SRG and SRN are categorized into Normal grade (no symbol), High accuracy grade (H), Precision grade (P), Super precision grade (SP) and Ultra precision grade (UP) by model numbers, as indicated in Table15 on **Δ1-76**.

Fig		1	3
-----	--	---	---

Table14 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail ler	ngth (mm)	Running Parallelism Values				
Above	Or less	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade
—	50	5	3	2	1.5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1.5	1
125	200	5	3.5	2	1.5	1
200	250	6	4	2.5	1.5	1
250	315	7	4.5	3	1.5	1
315	400	8	5	3.5	2	1.5
400	500	9	6	4.5	2.5	1.5
500	630	11	7	5	3	2
630	800	12	8.5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7.5	4.5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8.5	5.5	4.5
2000	2500	20	14	9.5	6	5
2500	3090	21	16	11	6.5	5.5

LM Guide

Table 15 Accuracy Standards for Models SHS, SSR, SVR/SVS, SHW, HSR, SR, NR/NRS-X, NR/NRS, HRW, NSR-TBC, HSR-M1, HSR-M1VV, SR-M1, HSR-M2, SRG, and SRN.

						Unit: mm
Model No	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
	Item	No Symbol	H	Р	SP	UP
	Dimensional tolerance in height M	±0.07	±0.03	±0.015	<u>+</u> 0.007	—
	Difference in height M	0.015	0.007	0.005	0.003	—
8	Dimensional tolerance in width W ₂	±0.04	±0.02	±0.01	±0.007	—
10	Difference in width W2	0.02	0.01	0.006	0.004	—
12 14	Running parallelism of surface C against surface A	∆C (as shown in Table14 ⊠1-75)				
	Running parallelism of surface D against surface B	∆D (as shown in Table14 ⊠1-75)				
	Dimensional tolerance in height M	±0.07	±0.03	0 0.03	0 0.015	0 -0.008
	Difference in height M	0.02	0.01	0.006	0.004	0.003
15 17	Dimensional tolerance in width W ₂	±0.06	±0.03	0 0.02	0 0.015	0 -0.008
20	Difference in width W2	0.02	0.01	0.006	0.004	0.003
21	Running parallelism of surface C against surface A	△C (as shown in Table14 🖾 1-75)				
	Running parallelism of surface D against surface B	∆D (as shown in Table14 ⊠1-75)				
	Dimensional tolerance in height M	±0.08	±0.04	0 0.04	0 0.02	0 0.01
	Difference in height M	0.02	0.015	0.007	0.005	0.003
25 27	Dimensional tolerance in width W ₂	±0.07	±0.03	0 0.03	0 0.015	0 0.01
30	Difference in width W2	0.025	0.015	0.007	0.005	0.003
35	Running parallelism of surface C against surface A	∆C (as shown in Table14 ⊠1-75)				
	Running parallelism of surface D against surface B	∆D (as shown in Table14 ⊠1-75)				
	Dimensional tolerance in height M	±0.08	±0.04	0 0.05	0 0.03	0 0.015
10	Difference in height M	0.025	0.015	0.007	0.005	0.003
40	Dimensional tolerance in width W ₂	±0.07	±0.04	0 0.04	0 0.025	0 0.015
55	Difference in width W ₂	0.03	0.015	0.007	0.005	0.003
60	Running parallelism of surface C against surface A	△C (as shown in Table14 △1-75)				
	Running parallelism of surface D against surface B	∆D (as shown in Table14 ⊠1-75)				
65 70 75	Dimensional tolerance in height M	±0.08	±0.04	0 0.05	0 0.04	0 0.03
	Difference in height M	0.03	0.02	0.01	0.007	0.005
	Dimensional tolerance in width W ₂	±0.08	±0.04	0 0.05	0 0.04	0 0.03
100	Difference in width W ₂	0.03	0.02	0.01	0.007	0.005
120	Running parallelism of surface C against surface A	∆C (as shown in Table14 ⊠1-75)				
	Running parallelism of surface D against surface B	△D (as shown in Table14 △1-75)				

Note1)Models SRG35 to 65 are available in high accuracy grade and above. Other models are only available in precision grade or above. (Normal grade is not available.) Note2)Model SRN is available in precision grade or above. (Normal and H grade are not available.)

A1-76

Point of Selection

Determining the Accuracy

• Accuracies of model HMG are defined by model number as indicated in Table16.

Table16 Model HMG Accuracy Standard

		Unit: mm
Model	Accuracy Standards	Normal grade
No.	Item	No symbol
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.02
	Dimensional tolerance in width W_2	±0.1
15	Difference in width W ₂	0.02
	Running parallelism of surface C against surface A	ΔC (as shown in Table17)
	Running parallelism of surface D against surface B	ΔD (as shown in Table17)
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.02
	Dimensional tolerance in width W ₂	±0.1
25	Difference in width W ₂	0.03
35	Running parallelism of surface C against surface A	ΔC (as shown in Table17)
	Running parallelism of surface D against surface B	ΔD (as shown in Table17)
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.03
	Dimensional tolerance in width W ₂	±0.1
45	Difference in width W2	0.03
65	Running parallelism of surface C against surface A	ΔC (as shown in Table17)
	Running parallelism of surface D against surface B	ΔD (as shown in Table17)

Table17 I	M Rail Length and Running Pa	rallelism
	by Accuracy Standard	

Unit: µm

LM rail length (mm)		Running Parallelism Values
Above	Or less	Normal grade
—	125	30
125	200	37
200	250	40
250	315	44
315	400	49
400	500	53
500	630	58
630	800	64
800	1000	70
1000	1250	77
1250	1600	84
1600	2000	92

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t+31 (0)85 0491 777 e info@almotion.nl www.lineairegeleiding.nl

 Accuracies of model HCR are categorized into normal and high accuracy grades by model number as indicated in Table18.

Table18 Accuracy Standard for Model HCR

			Unit. mm
Model	Accuracy standards	Normal grade	High-accuracy grade
INU.	Item	No Symbol	Н
12	Dimensional tolerance in height M	±0.2	±0.2
15	Difference in height M	0.05	0.03
25 35	Running parallelism of surface C against surface A	∆C (as shown in Table19)	
	Dimensional tolerance in height M	±0.2	±0.2
45	Difference in height M	0.06	0.04
65	Running parallelism of surface C against surface A	∆ (as shown	C in Table19)

Table19 LM Rail Length and Running Parallelism by Accuracy Standard

			Unit: µm
LM rail ler	ngth (mm)	Running Para	Ilelism Values
Above	Or less	Normal grade	High-accuracy grade
_	125	30	15
125	200	37	18
200	250	40	20
250	315	44	22
315	400	49	24
400	500	53	26
500	630	58	29
630	800	64	32
800	1000	70	35
1000	1250	77	38
1250	1600	84	42
1600	2000	92	46

• Accuracies of model JR are defined by model number as indicated in Table20.

Fig.16

Table20 Accuracy Standard for Model JR

Unit: mm

Model	Accuracy standards	Normal grade
No.	Item	No Symbol
	Difference in height M	0.05
25 35	Running parallelism of surface C against surface A	ΔC (as shown in Table21)
	Difference in height M	0.06
45 55	Running parallelism of surface C against surface A	ΔC (as shown in Table21)

Table21 LM Rail Length and Running Parallelism by Accuracy Standard Unit: um

F				
LM rail lei	ngth (mm)	Running Parallelism Values		
Above	Or less	Normal grade		
_	50	5		
50	80	5		
80	125	5		
125	200	6		
200	250	8		
250	315	9		
315	400	11		
400	500	13		
500	630	15		
630	800	17		
800	1000	19		
1000	1250	21		
1250	1600	23		
1600	2000	26		
2000	2500	28		
2500	3150	30		
3150	4000	33		

Almotion B.V. Nijverheidsweg 14 | 6662 NG Elst (Gld) | The Netherlands t +31 (0)85 0491 777 e info@almotion.nl www.ilmotion.nl | www.lineairegeleiding.nl
Point of Selection

Determining the Accuracy

• Accuracies of models SCR and CSR are categorized into precision, super precision and ultra precision grades by model number as indicated in Table22.

Table22 Accuracy Standard for Models SCR and CSR Unit: mm

Model No.	Accuracy standards	Precision grade	Super precision grade	Ultra precision grade	
	Item	Р	SP	UP	
	Difference in height M	0.01	0.007	0.005	
15	Perpendicularity of surface D against surface B	0.005	0.004	0.003	
20	Running parallelism of surface E against surface B	(as sho	∆C own in Ta	able23)	
	Running parallelism of surface F against surface D	(as sho	∆D own in Ta	able23)	
	Difference in height M	0.01	0.007	0.005	
	Perpendicularity of surface D against surface B	0.008	0.006	0.004	
25	Running parallelism of surface E against surface B	∆C (as shown in Table23)			
	Running parallelism of surface F against surface D	∆D (as shown in Table23)			
	Difference in height M	0.01	0.007	0.005	
20	Perpendicularity of surface D against surface B	0.01	0.007	0.005	
35	Running parallelism of surface E against surface B	∆C (as shown in Table23)			
	Running parallelism of surface F against surface D	(as sho	∆D own in Ta	able23)	
	Difference in height M	0.012	0.008	0.006	
	Perpendicularity of surface D against surface B	0.012	0.008	0.006	
45	Running parallelism of surface E against surface B	(as sho	∆C own in Ta	able23)	
	Running parallelism of surface F against surface D		∆D (as shown in Table23)		
	Difference in height M	0.018	0.012	0.009	
	Perpendicularity of surface D against surface B	0.018	0.012	0.009	
65	Running parallelism of surface E against surface B	(as sho	∆C own in Ta	able23)	
	Running parallelism of surface F against surface D	(as sho	∆D own in Ta	able23)	

Table23 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm				
LM rail ler	ngth (mm)	Running	Parallelis	m Values
Above	Or less	Precision grade	Super precision grade	Ultra precision grade
—	50	2	1.5	1
50	80	2	1.5	1
80	125	2	1.5	1
125	200	2	1.5	1
200	250	2.5	1.5	1
250	315	3	1.5	1
315	400	3.5	2	1.5
400	500	4.5	2.5	1.5
500	630	5	3	2
630	800	6	3.5	2
800	1000	6.5	4	2.5
1000	1250	7.5	4.5	3
1250	1600	8	5	4
1600	2000	8.5	5.5	4.5
2000	2500	9.5	6	5
2500	3090	11	6.5	5.5

 Accuracies of model HR are categorized into normal, high accuracy, precision, super precision and ultra precision grades as indicated in Table24.

ALMOTION

Table24 Accuracy Standard for Model HR

Unit: mm

Accuracy standards	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
Item	No Symbol	Н	Р	SP	UP
Dimensional tolerance in height M	±0.1	±0.05	±0.025	±0.015	±0.01
Difference in height M Note 1)	0.03	0.02	0.01	0.005	0.003
Dimensional tolerance for total width W_0	±C).1		±0.05	
Difference in total width Wo ^{Note 2)}	0.03	0.015	0.01	0.005	0.003
Parallelism of the raceway against surfaces A and B	inst ∆C (as shown in Table25)				

Note 1) Difference in height M applies to a set of LM Guides used on the same plane.
Note 2) Difference in total width W₀ applies to LM blocks used in combination on one LM rail.
Note 3) In a set of LM Guides, dimensional tolerance and difference in total width W₀ for precision and higher grades apply only to the master rail. The Master LM Guide will have a serial number ending with "KB" printed on it.

Table25 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail ler	ngth (mm)	Running Parallelism Values				
Above	Or less	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade
—	50	5	3	2	1.5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1.5	1
125	200	5	3.5	2	1.5	1
200	250	6	4	2.5	1.5	1
250	315	7	4.5	3	1.5	1
315	400	8	5	3.5	2	1.5
400	500	9	6	4.5	2.5	1.5
500	630	11	7	5	3	2
630	800	12	8.5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7.5	4.5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8.5	5.5	4.5
2000	2500	20	14	9.5	6	5
2500	3000	21	16	11	6.5	5.5

Point of Selection

Determining the Accuracy

 Accuracies of model GSR are categorized into normal, high accuracy and precision grades by model number as indicated in Table26. Table27 LM Rail Length and Running Parallelism

I Init: mm

Table26 Accuracy Standard for Model GSR

Model No.	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	
	Item	No Symbol	Н	Р	
	Dimensional tolerance in height M		±0.02		
15 20	Running parallelism of surface C against surface A	ΔC (as shown in Table27			
	Running parallelism of surface D against surface B		ΔD (as shown in Table27)		
05	Dimensional tolerance in height M	±0.03			
25 30 35	Running parallelism of surface C against surface A	∆C (as shown in Table27)			
00	Running parallelism of surface D against surface B	ΔD (as shown in Table27)			

LM rail ler	ngth (mm)	Running Parallelism Values		
Above	Or less	Normal grade	High-accuracy grade	Precision grade
—	50	5	3	2
50	80	5	3	2
80	125	5	3	2
125	200	5	3.5	2
200	250	6	4	2.5
250	315	7	4.5	3
315	400	8	5	3.5
400	500	9	6	4.5
500	630	11	7	5
630	800	12	8.5	6
800	1000	13	9	6.5
1000	1250	15	11	7.5
1250	1600	16	12	8
1600	2000	18	13	8.5
2000	2500	20	14	9.5
2500	3000	21	16	11

by Accuracy Standard

· Accuracies of model GSR-R are categorized into normal and high accuracy grades by model number as indicated in Table28.

Table28 Accuracy Standard for GSR-R

			Unit. min
Model	Accuracy standards	Normal grade	High-accuracy grade
INU.	Item	No Symbol	Н
05	Dimensional tolerance in height M	±0.03 ΔC (as shown in Table29	
25 30 35	Running parallelism of surface C against surface A		
55	Running parallelism of surface D against surface B	∆D (as shown in Table29	

Table29 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail length (mm)		Running Parallelism Values		
Above	Or less	Normal grade	High-accuracy grade	
—	50	5	3	
50	80	5	3	
80	125	5	3	
125	200	5	3.5	
200	250	6	4	
250	315	7	4.5	
315	400	8	5	
400	500	9	6	
500	630	11	7	
630	800	12	8.5	
800	1000	13	9	
1000	1250	15	11	
1250	1600	16	12	
1600	2000	18	13	

LM Guide

Unit: µm

512E'

· Accuracies of models SRS, RSR, RSR-M1and RSR-W are categorized into normal, high accuracy and precision grades by model number as indicated in Table30.

ALMOTION

Fig.21

Table30 Accuracy Standards for Models SRS, RSR,

Model	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	
INU.	Item	No Symbol	Н	Р	
	Dimensional toler- ance in height M	±0.03	—	±0.015	
	Difference in height M	0.015	—	0.005	
	Dimensional toler- ance in width W ₂	±0.03	_	±0.015	
3	Difference in width W2	0.015	_	0.005	
5	Running parallelism of surface C against surface A	ΔC (as shown in Table31)			
	Running parallelism of surface D against surface B	elism gainst ∆D (as shown in Ta		Table31)	
	Dimensional toler- ance in height M	±0.04	±0.02	±0.01	
_	Difference in height M	0.03	0.015	0.007	
9	Dimensional toler- ance in width W ₂	±0.04	±0.025	±0.015	
14	Difference in width W2	0.03	0.02	0.01	
15 20 25	Running parallelism of surface C against surface A	ΔC (as shown in Table32)			
	Running parallelism of surface D against surface B	∆D (as s	shown in ⁻	Table32)	

RSR-M1 and RSR-W Unit[.] mm

Table31 LM Rail Length and Running Parallelism for Models SRS5, RSR3 and RSR5 by Accuracy Standard

Unit: µm

LM rail ler	ngth (mm)	Running Parallelism Values		
Above	Or less	Normal grade	Precision grade	
_	25	2.5	1.5	
25	50	3.5	2	
50	100	5.5	3	
100	150	7	4	
150	200	8.4	5	

Table32 LM Rail Length and Running Parallelism for Models SRS7 to 25 and RSR7 to 25 by Accuracy Standard

Unit: um

LM rail ler	ngth (mm)	Running	Parallelisr	n Values
Above	Or less	Normal grade	High- accuracy grade	Precision grade
_	40	8	4	1
40	70	10	4	1
70	100	11	4	2
100	130	12	5	2
130	160	13	6	2
160	190	14	7	2
190	220	15	7	3
220	250	16	8	3
250	280	17	8	3
280	310	17	9	3
310	340	18	9	3
340	370	18	10	3
370	400	19	10	3
400	430	20	11	4
430	460	20	12	4
460	520	21	12	4
520	550	22	12	4
550	640	22	13	4
640	670	23	13	4
670	700	23	13	5
700	820	23	14	5
820	850	24	14	5
850	970	24	15	5
970	1030	25	16	5
1030	1150	25	16	6
1150	1330	26	17	6
1330	1420	27	18	6
1420	1510	27	18	7
1510	1830	28	19	7
1830	2000	28	19	8

A1-82

Point of Selection

Determining the Accuracy

 Accuracies of model MX are categorized into normal and precision grades by model number as indicated in Table33.

Fig.22

Table33 Accuracy Standard for Model MX

Model	Accuracy standards	Normal grade	Precision grade
No.	Item	No Symbol	Р
	Difference in height M	0.015	0.005
	Perpendicularity of surface D against surface B	0.003	0.002
5	Running parallelism of surface E against surface B	(as shown	C in Table34)
	Running parallelism of surface F against surface D	ΔD (as shown in Table34	
	Difference in height M	0.03	0.007
	Perpendicularity of surface D against surface B	0.01	0.005
7	Running parallelism of surface E against surface B	(as shown	C in Table35)
	Running parallelism of surface F against surface D	(as shown	D in Table35)

Table35 LM Rail Length and Running Parallelism for Model MX7 by Accuracy Standard

Unit: µm

LM rail length (mm)		Running Parallelism Values		
Above	Or less	Normal grade	Precision grade	
—	40	8	1	
40	70	10	1	
70	100	11	2	
100	130	12	2	
130	160	13	2	
160	190	14	2	
190	220	15	3	
220	250	16	3	
250	280	17	3	
280	310	17	3	
310	340	18	3	
340	370	18	3	
370	400	19	3	

Table34 LM Rail Length and Running Parallelism for Model MX5 by Accuracy Standard

			Οπι. μπ	
LM rail length (mm)		Running Parallelism Values		
Above	Or less	Normal Precision grade grade		
—	25	2.5	1.5	
25	50	3.5	2	
50	100	5.5	3	
100	150	7	4	
150	200	8.4	5	

LM Guide

• Accuracies of model SRW are categorized into precision, super precision and ultra precision grades by model number as indicated in Table36.

ALMOTION

Table36 Accuracy Standard for Model SRW

				Unit: mm	
Model No.	Accuracy standards	Preci- sion grade	Super precision grade	Ultra precision grade	
	Item	Р	SP	UP	
	Dimensional toler- ance in height M	0 -0.05	0 -0.03	0 -0.015	
	Difference in height M	0.007	0.005	0.003	
70	Dimensional toler- ance in width W ₂	0 -0.04	0 -0.025	0 0.015	
85	Difference in width W2	0.007	0.005	0.003	
	Running parallelism of surface C against surface A	ΔC (as shown in Table37)			
	Running parallelism ΔD of surface D against surface B			ble37)	
	Dimensional toler- ance in height M	0 -0.05	0 -0.04	0 0.03	
	Difference in height M	0.01	0.007	0.005	
	Dimensional toler- ance in width W ₂	0 -0.05	0 -0.04	0 0.03	
100	Difference in width W2	0.01	0.007	0.005	
	Running parallelism of surface C against surface A	∆C (as shown in Table37)			
	Running parallelism of surface D against surface B	∆D (as shown in Table37)			
	Dimensional toler- ance in height M	0 -0.05	0 -0.04	0 0.03	
	Difference in height M	0.01	0.007	0.005	
120	Dimensional toler- ance in width W ₂	0 -0.05	0 -0.04	0 0.03	
150	Difference in width W2	0.01	0.007	0.005	
	Running parallelism of surface C against surface A	∆C (as shown in Table37)			
	Running parallelism of surface D against surface B	ΔD (as shown in Table37)			

Table37 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail length (mm)		Running Parallelism Values			
Above	Or less	Preci- sion grade	Super precision grade	Ultra precision grade	
—	50	2	1.5	1	
50	80	2	1.5	1	
80	125	2	1.5	1	
125	200	2	1.5	1	
200	250	2.5	1.5	1	
250	315	3	1.5	1	
315	400	3.5	2	1.5	
400	500	4.5	2.5	1.5	
500	630	5	3	2	
630	800	6	3.5	2	
800	1000	6.5	4	2.5	
1000	1250	7.5	4.5	3	
1250	1600	8	5	4	
1600	2000	8.5	5.5	4.5	
2000	2500	9.5	6	5	
2500	3090	11	6.5	5.5	

Point of Selection

Unit: mm

Determining the Accuracy

 Accuracies of model EPF are categorized into normal, high accuracy and precision grades by model number as indicated in Table38. Table38 Accuracy Standard for Model EPF

Model	Accuracy Standards	Normal grade	High- accuracy grade	Precision grade
NO.	Item	No Symbol	Н	Р
7M 9M 12M 15M	Dimensional toler- ance in height M	±0.04	±0.02	±0.01
	Difference in height M	0.03	0.015	0.007
	Dimensional toler- ance in width W ₂	±0.04	±0.025	±0.015
	Running parallelism of sur- face C against surface A ^{Note)}	0.008	0.004	0.001
	Running parallelism of sur-	0.008	0.004	0.001

Note) If the stroke is more than 40 mm, contact THK.

 Accuracies of model SR-MS are categorized into precision, super precision and ultra precision grades by model number as indicated in Table39.

Table39 Accuracy Standard for Model SR-MS

				Unit: mm
Model No.	Accuracy Standards	Preci- sion grade	Super precision grade	Ultra precision grade
	Item	Р	SP	UP
15 20	Dimensional toler- ance in height M	0 -0.03	0 -0.015	0 -0.008
	Difference in Height M	0.006	0.004	0.003
	Dimensional toler- ance in width W ₂	0 -0.02	0 -0.015	0 -0.008
	Difference in Width W ₂	0.006	0.004	0.003
	Running parallel- ism of surface C against surface A	ΔC (as shown in Table40)		
	Running parallel- ism of surface D against surface B	ΔD (as shown in Table40)		

Table40 LM Rail Length and Running Parallelism by Accuracy Standard Unit: um

LM rail length (mm)		Running Parallelism Values			
Above	Or less	Preci- sion grade	Super precision grade	Ultra precision grade	
		Р	SP	UP	
—	50	2	1.5	1	
50	80	2	1.5	1	
80	125	2	1.5	1	
125	200	2	1.5	1	
200	250	2.5	1.5	1	
250	315	3	1.5	1	
315	400	3.5	2	1.5	

LM Guide

512E'

LM Guide Features and Dimensions of Each Model

Structure and Features of the Caged Ball LM Guide

Fig.1 Structural Drawing of the Caged Ball LM Guide Model SHS

Fig.2 Circulation Structure inside the LM Block of the Caged Ball LM Guide

With the Caged Ball LM Guide, the use of a ball cage allows lines of evenly spaced balls to circulate, thus to eliminate friction between the balls.

In addition, grease held in a space between the ball circulation path and the ball cage (grease pocket) is applied on the contact surface between each ball and the ball cage as the ball rotates, forming an oil film on the ball surface. As a result, an oil film is not easily broken.

ALMOTION Features and Dimensions of Each Model

Structure and Features of the Caged Ball LM Guide

Advantages of the Ball Cage Technology

- (1) The absence of friction between balls, together with increased grease retention, achieves long service life and long-term maintenance-free (lubrication-free) operation.
- (2) The absence of ball-to-ball collision achieves low noise and acceptable running sound.
- (3) The absence of friction between balls achieves low heat generation and high speed operation.
- (4) The circulation of lines of evenly spaced balls ensures smooth ball rotation.
- (5) The absence of friction between balls allows high grease retention and low dust generation.

[Long Service Life and Long-term Maintenance-free Operation]

Data on Long Service Life and Long-term Maintenance-free Operation

Use of a ball cage eliminates friction between balls and increases grease retention, thus to achieve long service life and long-term maintenance-free operation.

[Condition]			
Speed	: 60m/min		
Stroke	: 350mm		
Acceleration	n: 9.8m/s²		
Orientation	: horizontal		
Load	: Caged Ball LM Guide	:	11.1kN
	Full-ball type	:	9.8kN

Caged Ball LM Guide and Full-Ball Type Durability Testing Data

[Low Noise, Acceptable Running Sound]

Noise Level Data

Since the ball circulation path inside the LM block is made of resin, metallic noise between balls and the LM block is eliminated. In addition, use of a ball cage eliminates metallic noise of ball-to-ball collision, allowing a low noise level to be maintained even at high speed.

[High Speed]

High-speed Durability Test Data

Since use of a ball cage eliminates friction between balls, only a low level of heat is generated and superbly high speed is achieved.

[Condition]

Acceleration: 1.5G

Grease remains, and no anomaly is observed in the balls and grease.

Detail view of the ball cage

ALMOTION Features and Dimensions of Each Model

Structure and Features of the Caged Ball LM Guide

[Smooth Motion]

Rolling Resistance Data

Use of a ball cage allows the balls to be uniformly aligned and prevents a line of balls from meandering as they enter the LM block. This enables smooth and stable motion to be achieved, minimizes fluctuations in rolling resistance, and ensures high accuracy, in any mounting orientation.

[Low dust generation]

• Low Dust Generation Data

In addition to friction between balls, metallic contact has also been eliminated by using resin for the through holes. Furthermore, the Caged Ball LM Guide has a high level of grease retention and minimizes fly loss of grease, thus to achieve superbly low dust generation.

LM Guide

A 1-91