

ALMOTION Mini-Rotary Actuator Rack-and-Pinion Type/Size: 05, 1

Series CRJ

CRBU

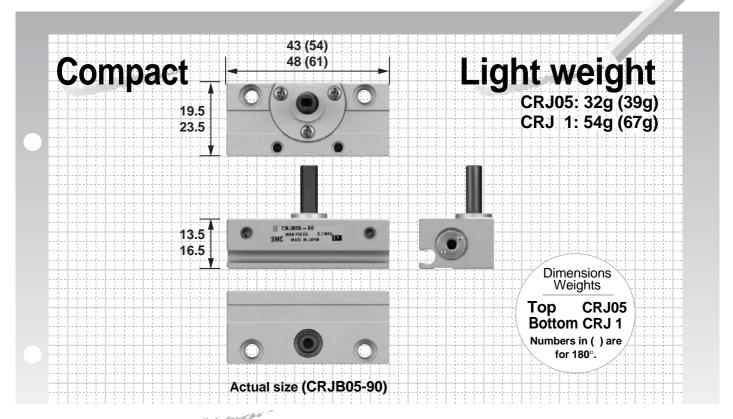
CRJ

CRA1

CRQ

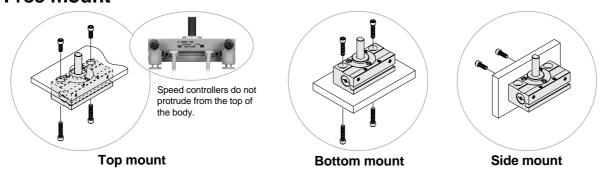
MRQ

MSQ


MSU

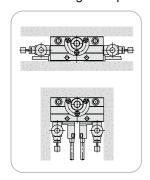
In our pursuit of excellence in size and weight reduction, we proudly announce the release of the Series CRJ **Mini**-Rotary Actuator!

Rack-and-Pinion Type/Size: 05, 1



Flexible mounting

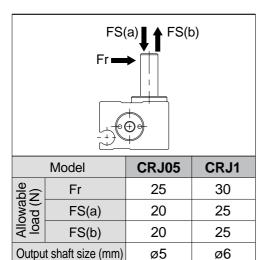
A new compact body design not only reduces overall space requirements, but also achieves space savings in wiring and piping.

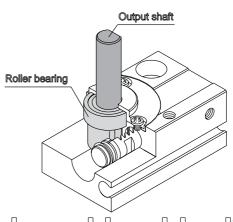

Ease in mounting is maximized thanks to the merits of the new compact body.

Free mount

■ Wiring and piping direction can be selected depending on mounting conditions.

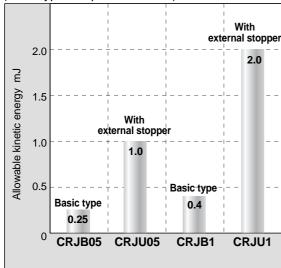
Mounting examples for auto switch and speed controller



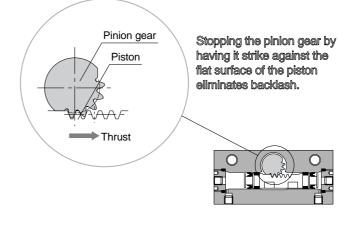


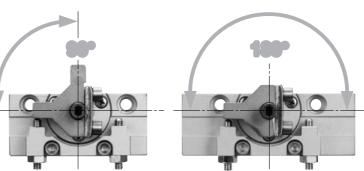
Improved allowable load

Large roller bearing and large diameter output shaft add to overall compactness while ensuring high rigidity.



Reduced


Even with a single rack design, the use of a special construction minimizes backlash.


With external stopper/Series CRJU

4 to 5 times allowable kinetic energy (Basic type compared to CRJB)

Angle is adjustable: ±5° at each rotation end

Variations

Series		Rotation	n angle		Dort location	Auto oviitab	
Series	90°	100°	180°	190°	Port location	Auto switch	
Dania tuma	CRJB05	•	•	•	•		
Basic type	CRJB 1	•	•	•	•	Front port	D-F8
With external	CRJU05	•	_	•	_	Side port	D-F9
stopper	CRJU 1	•	_	•	_		- 4

CRB

CRBU

CRJ

CRA1

CRQ

MRQ

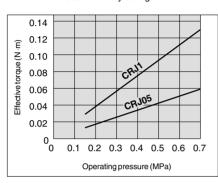
MSQ

MSU

Series CRJ

Model Selection

Calculation **Procedure Example** Operating conditions List all possible operating conditions according to the mounting position. Model used Operating pressure • Mounting position Fs(b) Fs(a) Load type Ts (N·m) Tf (N·m) Ta (N·m) Load configuration • Rotation time t (s) Rotary actuator: CRJB05-90 Rotation angle Mounting orientaion: Vertical Type of load: Inertial load Ta · Load mass m (kg) Load 1 configuration: 20mm x 10mm (rectangular plate) · Distance between central axis Load 2 configuration: 5mm x 5mm (square plate) and center of gravity H (mm) Rotation time t: 0.2s Rotation angle: 90° Load 1 mass m1: 0.03kg Load 2 mass m2: 0.006kg Distance between central axis and center of gravity H: 7mm Required torque Confirm the type of load as shown Inertial load Effective torque ≥ Ts below, and select an actuator that 10 x Ta = 10 x I x ω satisfies the required torque. Effective torque \geq (3 to 5) x Tf = $10 \times 1.57 \times 10^{-6} \times (2 \times (\pi/2)/0.2^2)$ Effective torque ≥ 10 x Ta • Static load: Ts = 0.0012N·m < Effective torque Effective torque Resistance load: Tf Load types Note) I substitutes for 5, the value for inertial moment. • Inertial load: Ta **Rotation time** Confirm that it is within the rotation adjustment time range. 0.2s/90° 0.1 to 0.5s/90° OK Allowable load Confirm that the radial load, Thrust load: m x 9.8 ≤ Allowable load $(0.03 + 0.006) \times 9.8 = 0.35N < Allowable load$ thrust load and moment are within the allowable ranges. Allowable load **Inertial moment** Find the load's inertial moment "I" $I_1 = m x (a^2 + b^2)/12$ $I1 = 0.03 \text{ x } (0.02^2 + 0.01^2)/12 = 1.25 \text{ x } 10^{-6} \text{kg} \cdot \text{m}^2$ for the energy calculation. $I_2 = m x (a^2 + b^2)/12 + m x H^2$ $I_2 = 0.006 \times (0.005^2 + 0.005^2)/12 + 0.006 \times 0.007^2$ $I = I_1 + I_2$ $= 0.32 \times 10^{-6} \text{kg} \cdot \text{m}^2$ $I = 1.25 \times 10^{-6} + 0.32 \times 10^{-6}$ Inertial moment = 1.57 x 10⁻⁶kg·m² Kinetic energy Confirm that the load's kinetic 1/2 x I x ω² ≤ Allowable energy $1/2 \times 1.57 \times 10^{-6} \times (2 \times (\pi/2)/0.2)^2$ energy is within the allowable $\omega = 2\theta/t$ (ω : Terminal angular velocity) = 0.00019J = 0.19mJ < Allowable energy OK value. θ : Rotation angle (rad) t: Rotation time (s) Allowable kinetic energy/Rotation time


Model Selection Series CRJ

Effective Torque

Unit: N·m

Size		Operating pressure (MPa)													
Size	0.15	0.2	0.3	0.4	0.5	0.6	0.7								
05	0.013	0.017	0.026	0.034	0.042	0.050	0.059								
1	0.029	0.038	0.057	0.076	0.095	0.11	0.13								

Note) Effective torque values are representative values. They are not guaranteed values. Use them only as a guide.

CRB

CRBU

CRJ

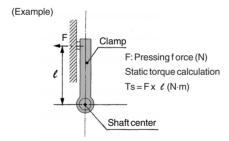
CRA1

CRQ

MRQ

MCO

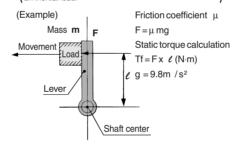
MSQ MSU


Load Types

Definition for our purposes:

A load that requires pressing force only, as represented by the clamp.

If the mass of the clamp itself in the drawing below is considered in the calculations, it should be regarded as an inertial load.

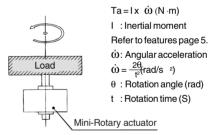

Resistance load: Tf

Definition for our purposes:

A load that is affected by external forces such as friction or gravity. Since the purpose is to move the load, and speed adjustment is necessary, allow an extra margin of 3 to 5 times in the effective torque.

* Actuator effective torque ≥ (3 to 5) x Tf

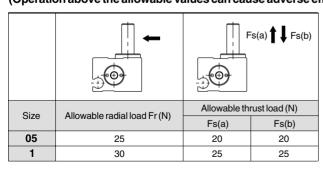
If the mass of the lever itself in the drawing below is considered in the calculations, it should be regarded as an inertial load.


• Inertial load:

Definition for our purposes:

The load that is actually rotated by the actuator. Since the purpose is to rotate the load, and speed adjustment is necessary, allow an extra margin of 10 times or more in the effective torque.

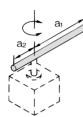
* Actuator effective torque ≥ S x Ta (S is 10 times or more)


Accelerating torque calculation

Allowable Load

Set the load and moment applied to the shaft within the allowable values provided in the table below.

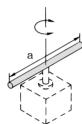
(Operation above the allowable values can cause adverse effects on service life, such as play in the shaft and loss of accuracy .)


Series CRJ

Inertial Moment Formulas

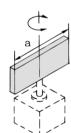
I: Inertial moment kg·m², m: Load mass kg

1. Thin shaft


Position of rotational axis: Perpendicular to the shaft anywhere along its length

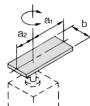
$$I = m_1 x \frac{a_1^2}{3} + m_2 x \frac{a_2^2}{3}$$

2. Thin shaft


Position of rotational axis: Through the shaft's centre of gravity

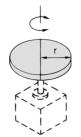
$$I = m x \frac{a^2}{12}$$

3. Thin rectangular plate (rectangular parallelopiped)


Position of rotational axis: Through the plate's centre of gravity

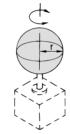
$$I = m x \frac{a^2}{12}$$

4. Thin rectangular plate (rectangular parallelopiped)


Position of rotational axis: Perpendicular to the plate through one end (also the same in the case of a thicker plate)

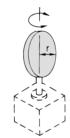
$$I = m_1 x \frac{4a_1^2 + b^2}{12} + m_2 x \frac{4a_2^2 + b^2}{12}$$

6. Cylinder (including thin round plate)

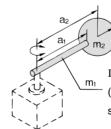

Position of rotational axis: Through the plate's central axis

$$I = m x \frac{r^2}{2}$$

7. Solid sphere

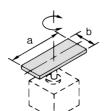

Position of rotational axis: Through the sphere's diameter

$$I = m x \frac{2r^2}{5}$$

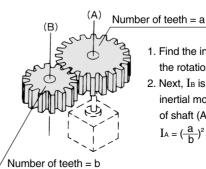

8. Thin round plate

Position of rotational axis: Through the plate's diameter

$$I = m x \frac{r^2}{4}$$


9. Load at the end of lever

 $I = m_1 x \frac{a_1^2}{3} + m_2 x a_2^2 + K$ (Example) When the shape of m2 is a sphere, refer to 7 above. K = $m_2 x \frac{2r^2}{5}$


5. Thin rectangular plate (rectangular parallelopiped)

Position of rotational axis: Through the centre of gravity and perpendicular to the plate (also the same in the case of a thicker plate)

$$I = m x \frac{a^2 + b^2}{12}$$

10. Gear transmission

- - 1. Find the inertial moment $I_{\mbox{\scriptsize B}}$ for the rotation of shaft (B).
 - 2. Next, $I_{\mbox{\scriptsize B}}$ is entered to find the inertial moment $I_{\mbox{\scriptsize A}}$ for the rotation of shaft (A) as

$$I_A = \left(\frac{a}{b}\right)^2 \times I_B$$

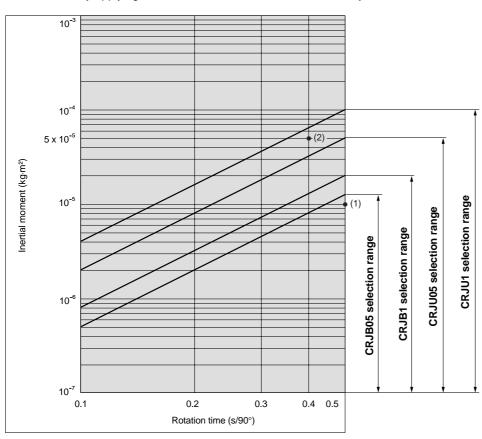
Kinetic Energy/Rotation Time

Even in cases where the torque required for rotation of the load is small, damage to internal parts may result from the inertial force of the load.

Take into account the load's inertial moment and rotation time during operation when making your model selection. (The inertial moment and rotation time charts can be used for your convenience in making model selections.)

1. Allowable kinetic energy and rotation time adjustment range

From the table below, set the rotation time within the proper adjustment range for stable operation. Note that slow speed operation exceeding the rotation time adjustment range, may lead to sticking or stopping of operation.


Size			Allowable kinetic energy mJ	Rotation time adjustment range for stable operation s/90°
05	Basic type	CRJB05	0.25	
03	With external stopper	per CRJU05 1.0		0.1 to 0.5
1	Basic type	CRJB 1	0.40	0.1 10 0.5
•	With external stopper	CRJU 1	2.0	

2. Inertial moment calculation

Since the formulas for inertial moment differ depending on the configuration of the load, refer to the inertial moment calculation formulas on the preceding page.

3. Model selection

Select models by applying the inertial moment and rotation time that you have calculated to the chart below.

1. <How to read the chart>

- Inertial moment 1 x 10⁻⁵kg·m²
- Rotation time 0.5s/90°

CRJB05 is selected in this case.

2. <Calculation example>

Load configuration: A cylinder of radius 0.05m and mass 0.04kg $\,$

Rotation time: 0.4s/90°

 $I = 0.04 \times 0.05^{2}/2 = 5 \times 10^{-5} \text{kg} \cdot \text{m}^{2}$

In the inertial moment and rotation time chart, find the intersection of the lines extended from the points corresponding to 5 x $10^{-5}\,kg\cdot m^2$ on the vertical axis (inertial moment) and 0.4s/90° on the horizontal axis (rotation time). Since the resulting intersection point falls within the CRJU1 selection range, CRJU1 may be selected.

CRB

CRBU

CRJ

CRA1

CRQ

MRQ

MSQ

IVIOU

MSU

ALMOTION

Mini-Rotary Actuator Air Consumption

Air consumption is the volume of air that is expended by the Mini-Rrotary Actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve. It is required for selection of a compressor and for calculation of its running cost.

* The air consumption (QcR) required for one reciprocation of a single Mini-Rotary Actuator alone is shown in the table below, and can be used to simplify the calculation.

Formulas

QCR =
$$2V \times \left(\frac{P + 0.1}{0.1}\right) \times 10^{-3}$$

QCP = $2 \times a \times \ell \times \frac{P}{0.1} \times 10^{-6}$
QC = QCR + QCP

QCR = Air consumption of Mini-Rotary Actuator

QCP = Air consumption of tubing or piping

V = Internal volume of Mini-Rotary Actuator

P = Operating pressure

(MPa)

Length of piping

mmi

a = Internal cross section of piping

QC = Air consumption required for one reciprocation of Mini-Rotary Actuator

[Letter (ANR)]

When selecting a compressor, it is necessary to choose one that has sufficient reserve for the total downstream air consumption of all pneumatic actuators. This is affected by factors such as leakage in piping, consumption by drain valves and pilot valves, and reduction of air volume due to temperature drops.

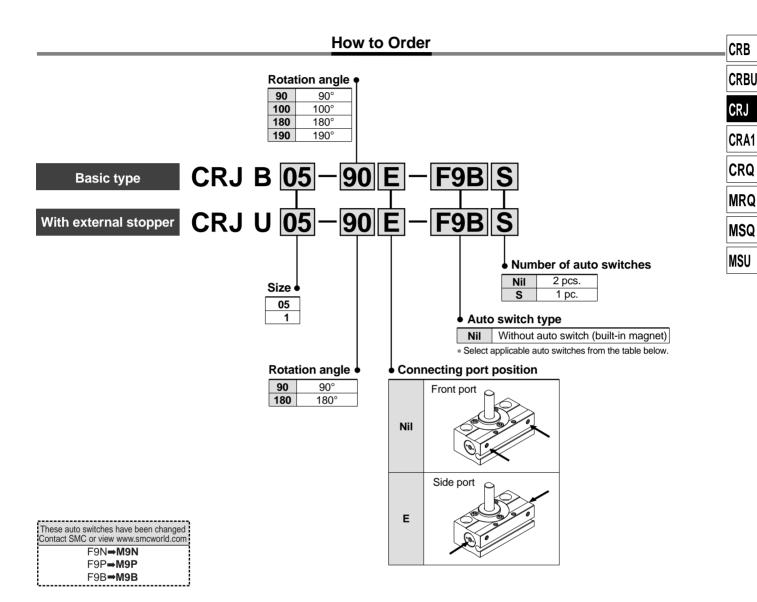
Formula

$Qc2 = Qc \times n \times Number of actuators \times Reserve factor$

Qc2 = Compressor discharge flow rate n = Actuator reciprocations per minute

Internal cross section of tubing and steel piping

Nominal size	O.D. (mm)	I.D. (mm)	Internal cross section a (mm²)
T□ 0425	4	2.5	4.9
T□ 0604	6	4	12.6
TU 0805	8	5	19.6
T□ 0806	8	6	28.3
1/8B	_	6.5	33.2
T□ 1075	10	7.5	44.2
TU 1208	12	8	50.3
T□ 1209	12	9	63.6
1/4B	_	9.2	66.5
TS 1612	16	12	113
3/8B	_	12.7	127
T□ 1613	16	13	133
1/2B	_	16.1	204
3/4B	_	21.6	366
1B	_	27.6	598


Air Consumption

Air consumption of rotary actuator: QCR ℓ(ANR)

C:==	D	Internal volume		Operating pressure (MPa)											
Size	Rotation	(cm ³)	0.15	0.2	0.3	0.4	0.5	0.6	0.7						
OF	90°	0.15	0.00074	0.00089	0.0012	0.0015	0.0018	0.0021	0.0024						
05	180°	0° 0.31	0.0015	0.0018	0.0025	0.0031	0.0037	0.0043	0.0049						
4	90°	0.33	0.0016	0.0020	0.0026	0.0033	0.0039	0.0046	0.0052						
1	180°	0.66	0.0033	0.0039	0.0052	0.0065	0.0078	0.0091	0.010						

Mini-Rotary Actuator Series CRJ

Applicable auto switches

<u> </u>												
					Lo	oad vo	ltage	Auto swit	ch part no.	Lead w	ire leng	th (m)*
Type	Special function	Electrical		Wiring	DC		AC	Electrical er	ntry direction	0.5	3	5
		entry	light	(output)			AC	Perpendicular	In-line	(Nil)	(Ľ)	5 (Z)
	switch			3-wire (NPN)				_	F9N	•	•	$\overline{}$
ي				3-wire (INPIN)				F8N	_	•	•	0
۱ŧ				3-wire (PNP)				_	F9P	•	•	i — 1
								F8P	_	•	•	0
state		Grommet		0	24V	12V	_		F9B	•	•	_
l st				2-wire				F8B	_	•	•	0
Solid	D			3-wire (NPN)				_	F9NW	•	•	0
Ň	Diagnostic indication (2-colour indication)			3-wire (PNP)				_	F9PW	•	•	0
	(2-colodi indication)			2-wire				_	F9BW	•	•	0

 $[\]ast$ Lead wire length symbols: 0.5m Nil (Example) F9N

(Example) F9NL 3m L

5m Z (Example) F9NWZ

^{*} Auto switches marked "O" are produced upon receipt of order.

ALMOTION

Series CRJ

Specifications

Ciza/Tyma	0	5		1							
Size/Type	Basic type	With external stopper	Basic type	With external stopper							
Fluid	Air (non-lube)										
Max. operating pressure	0.7MPa										
Min. operating pressure	0.15MPa										
Ambient and fluid temperature	0° to 60°C (with no freezing)										
Rotation angle Note)	90 ^{+8°} ₀ , 100 ^{+10°} ₀ 180 ^{+8°} ₀ , 190 ^{+10°} ₀	90, 180	90 ^{+8°} ₀ , 100 ^{+10°} ₀ 180 ^{+8°} ₀ , 190 ^{+10°} ₀	90, 180							
Angle adjustment range	_	±5° at each rotation end	_	$\pm 5^{\circ}$ at each rotation end							
Cylinder bore size	ø6 ø8										
Port size		N	13								

Note) If optimum accuracy of the rotation angle is required, select an actuator with external stopper.

Allowable Kinetic Energy and Rotation Time Adjustment Range

	Size/Type		Allowable kinetic energy (mJ)	Rotation time adjustment range for stable operation (s/90°)
0.5	Basic type	CRJB05	0.25	
05	With external stopper	CRJU05	1.0	0.1 to 0.5
_	Basic type	CRJB 1	0.40	0.1 10 0.5
1	With external stopper	CRJU 1	2.0	

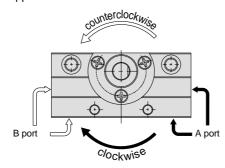
Weights

Type/S	ze	Model	Weight (g) Note)
	05	CRJB05-90	00
	05	CRJB05-100	32
	03	CRJB05-180	00
D ! - 4		CRJB05-190	39
Basic type		CRJB 1-90	EA
	4	CRJB 1-100	54
	1	CRJB 1-180	67
		CRJB 1-190	07
	05	CRJU05-90	47
With external	03	CRJU05-180	53
stopper	1	CRJU 1-90	70
	'	CRJU 1-180	81

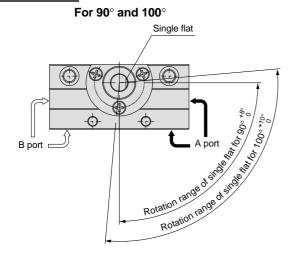
Note) Above values do not include auto switch weights.

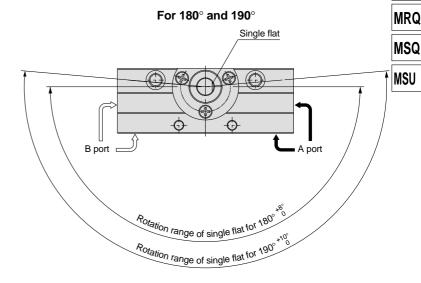
CRB

CRBU

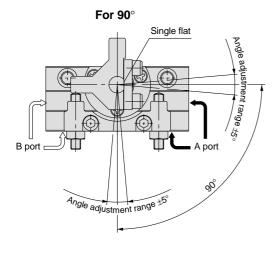

CRJ

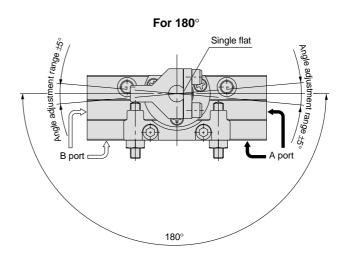
CRA1


CRQ


Rotating Direction and Rotation Angle

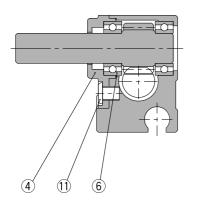
- The shaft turns clockwise when the A port is pressurized, and counterclockwise when the B port is pressurized.
- For actuators with external stopper, the rotation end can be set within the ranges shown in the drawing by adjusting the stopper bolt.

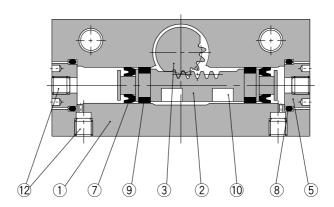



Basic type

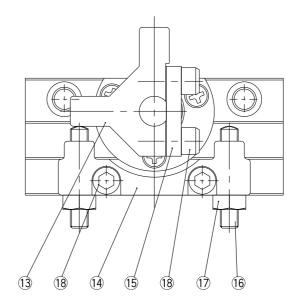
With external stopper

Note) • The drawings show the rotation range for the shaft's single flat.


 The single flat position in the drawings shows the counterclockwise rotation end when the rotation angle is adjusted to 90° and 180°.


ALMOTION

Series CRJ


Construction

Basic type/CRJB

With external stopper/CRJU

Parts list

No.	Description	Material
1	Body	Aluminum alloy
2	Piston	Stainless steel
3	Shaft	Stainless steel
4	Bearing retainer	Aluminum alloy
5	Cover	Aluminum alloy
6	Bearing	Bearing steel
7	Piston seal	NBR
8	O-ring	NBR
9	Wear ring	Resin

No.	Description	Material
10	Magnet	Magnetic material
11	Round head no. 0 Phillips screw	Steel wire
12	Hexagon socket head set screw	Stainless steel
13	Stopper	Chrome molybdenum steel
14	Holder	Aluminum alloy
15	Stopper retainer	Steel
16	Hexagon socket head set screw	Steel wire
17	Hexagon nut	Steel wire
18	Hexagon socket head cap screw	Stainless steel

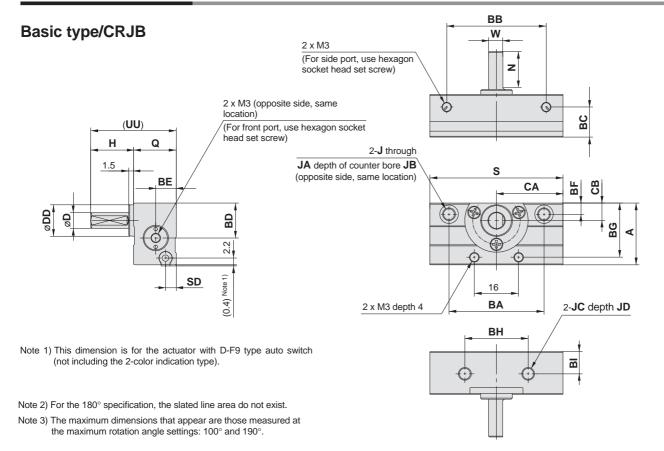
^{*} The mounting position of hexagon socket head set screws (no. 12) varies depending on the connecting port position.

CRB

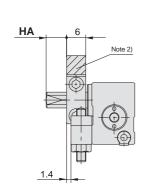
CRBU

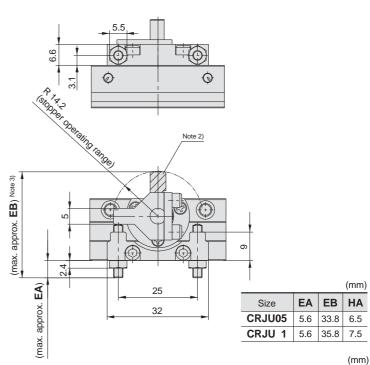
CRJ

CRA1


CRQ

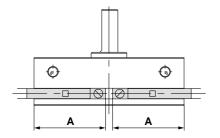
MRQ


MSQ

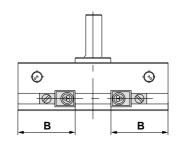

MSU

Dimensions/Size 0.5, 1

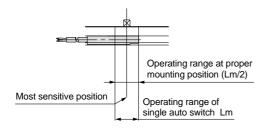
With external stopper/CRJU



Size	Rotation angle	Α	ВА	вв	вс	BD	BE	BF	BG	вн	ВІ	СА	СВ	D	DD	J	JA	JB	JC	JD	Н	N	Q	S	SD	UU	W								
CRJB05	90°	19.5	30	32.4	9.5	11	6.5	3.5	17 1	20	7	21.5	5.5	5g6	10h9	M4	5.8	3.5	M4	5	14 5	12.5	13.5	43	3.4	28	4.5								
	180°	19.5 30	10.0	10.0		4	43.	4	10.0 00	43.4	43.4	43.4	5.0	' '	0.0	0.0	.,	7.11 20		27	0.0	ogo	10113	IVIT	0.0	5.5		•	14.5	12.0	10.0	54	3.4	20	4.5
CD ID 1	90°	23.5	35	37.4	12.5	14	a	4.5	21.1	22	8.5	24	7.5	6g6	14h9	M5	7.5	4.5	M5	6	15.5	13.5	16.5	48	5.9	32	5.5								
CRJB 1	180°	20.0	00	50.4	12.0	'-	"	7.5	21.1		0.0	30.5	7.5	ogu	17113	IVIO	7.5	7.0	IVIO	0	15.5	10.0	10.5	61	0.0	02	0.5								



Series CRJ


Auto Switch/Proper Mounting Position at Rotation End

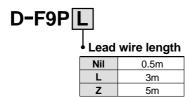
For D-F9

For D-F8

		D-F9 auto switch			D-F8 auto switch			
Size	Rotation	Α	Rotation range θm	Actuation range	В	Rotation range θm	Actuation range	
05	05 90° 20.5 40° 10°	100	16.5	20°	10°			
UJ		10	19.2					
1	90°	22.4	30°	200	10°	18.4	15°	400
'	180°	25.6		10	21.6	15	10°	

Rotation range θm : Value of the operating range Lm of a single auto switch converted to an axial rotation range.

Actuation range: Value of auto switch hysteresis converted to an angle.


Series CRJ Auto Switch Common Specifications

Auto Switch Common Specifications

Туре	Solid state switch	
Operating time	1ms or less	CRB
Impact resistance	1000m/s²	
Insulation resistance	$50M\Omega$ or more at $500VDC$ (between lead wire and case)	CRBU
	1000VAC for 1min.	CRJ
Withstand voltage	(between lead wire and case)	CRA1
Ambient temperature	−10° to 60°C	CRQ
Enclosure	sure IEC529 standard IP67 JISC0920 watertight construction	
LIICIOSUIE		

Lead Wire Lengths

Indication of lead wire length (Example)

Note 1) Lead wire length Z: Auto switch applicable to 5m length Solid state switches: All models are produced upon receipt of order.

Note 2) The standard lead wire length is 3m for water resistant 2-color indication solid state switches. (0.5m is not available.)

Note 3) For solid state with flexible wire specification, enter "-61" after the lead wire length.

(Example)

Lead Wire Colour Changes

Lead wire colours of SMC auto switches have been changed in order to meet standard IEC947-5-2 for production beginning September, 1996 and thereafter, as shown in the tables below.

Take special care regarding wire polarity during the time that the old colours still coexist with the new colours.

2-wire

	Old	New
(+) Output	Red	Brown
(–) Output	Black	Blue

3-wire

	Old	New
(+) Power supply	Red	Brown
GND Power supply	Black	Blue
Output	White	Black

MSU

Solid state with diagnostic output

anagnoone earbar		
	Old	New
(+) Power supply	Red	Brown
GND Power supply	Black	Blue
Output	White	Black
Diagnostic output	Yellow	Orange

Solid state with latch type diagnostic output

	Old	New
+) Power supply	Red	Brown
GND Power supply	Black	Blue
Dutput	White	Black
atch type diagnostic output	Yellow	Orange

Series CRJ/Specific Product Precautions

Be sure to read before handling.

Rotation Angle Adjustment

△ Caution

As a standard feature, the actuator with external stopper is equipped with a rotation angle adjustment screw that can be used to adjust the angle of rotation.

Size	Angle adjustment per single rotation of angle adjustment screw		
05	2.3°		
1	2.3°		

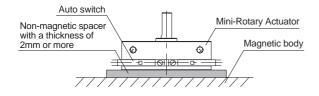
The rotation adjustment range for the actuator with external stopper is $\pm 5^{\circ}$ at each rotation end. Please note that adjusting beyond this range, may cause product malfunction.

Mounting of Speed Controller and Fittings

△ Caution

The M3 piping port is used. In case the speed controller or fittings are directly connected, use the series listed below.

- Speed controller
 AS12□1F/Elbow type
 AS13□1F/Universal type
- One-touch fitting One-touch mini Series KJ
- Reducer bushing Series M3


Auto Switch Mounting

△Caution

If a size 05 actuator with auto switch is being used, keep the magnetic body away at least 2mm or more from the bottom of the actuator.

If the magnetic body comes closer than 2mm, malfunction of the auto switch may occur due to the magnetic force drop.

* When using the bottom face for mounting, a non-magnetic spacer (such as aluminum) is required as shown below.

Maintenance

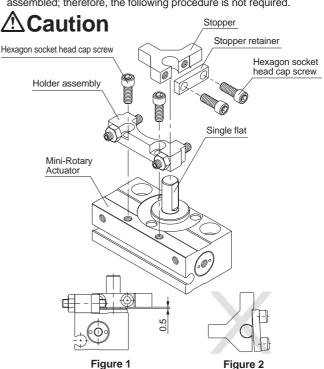
△ Caution

This product requires special tools; therefore, it cannot be disassembled for maintenance.

External Stopper Unit

△Caution

Order external stopper unit with the unit part numbers shown below.


Model	Unit part no.
CRJU05- 90	P531010-1
CRJU05-180	P531010-2
CRJU 1- 90	P531020-1
CRJU 1- 180	P531020-2

Note 1) External stopper units for 180° cannot be applied to the 90° Mini-Rotary Actuators.

Note 2) When using external stoppers for 90°, use Mini-Rotary Actuators with a rotation range of 100°, and for 180°, use actuators with a rotation range of 190°.

External Stopper Assembly Procedure

* Actuators with external stopper (Model CRJU) come already assembled; therefore, the following procedure is not required.

Assemble the stopper retainer to the stopper temporarily. Then place the stopper retainer in the single flat position and tighten with hexagon socket head cap screws.

Leave a space of approximately 0.5mm between the stopper and the Mini-Rotary Actuator, as shown in Figure 1.

Tighten the hexagon socket head cap screws evenly so that the stopper retainer is not unevenly tightened as in Figure 2.

Furthermore, take precautions to avoid applying excessive force to the shaft when tightening.

2 Tighten the holder assembly with hexagon socket head cap screws.

	Tightening torque N·m
Hexagon socket head cap screws	0.8 to 1.2

