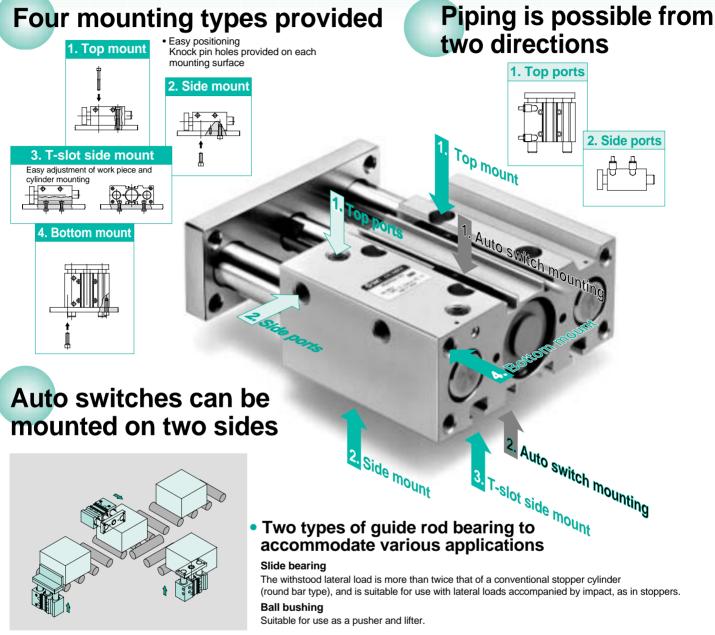
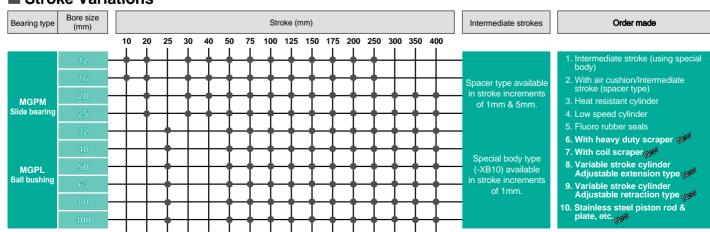


Compact Guide Cylinder


Series NGPø12, ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

ALMOTION Compact Guide Cylinder


Series MGP

∅12, ∅16, ∅20, ∅25, ∅32, ∅40, ∅50, ∅63, ∅80, ∅100

Long strokes up to 400mm standardised.

Stroke Variations

End lock type introduced

- · Holds the cylinder's home position even if the air supply is cut off.
- Compact body length is only 25mm longer than standard.

Stroke Variations

Bearing type	Bore size (mm)		Stroke (mm)											Intermediate strokes	Locking direction	Manual release
		25 1	50 I	75]	100 I	125 I	150 I	175 I	200 I	250 I	300 I	350 I	400 I			
MGPM	20 25	7	1	Ţ	Ţ	1	1	1	Ţ	1	1	-	1	Spacer	Front lock	Non-locking
Slide bearing	32 40	_	+	\pm	+	+	+	\pm	+	+	+	+	+	type available		type
ues.	50	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	+	+	in 5mm stroke		
MGPL Ball bushing	63 80	士	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	increments.	Rear lock	Locking type					
	100	-	-	Ţ.	+				+	-	-	-	+			

Air cushion type standardized

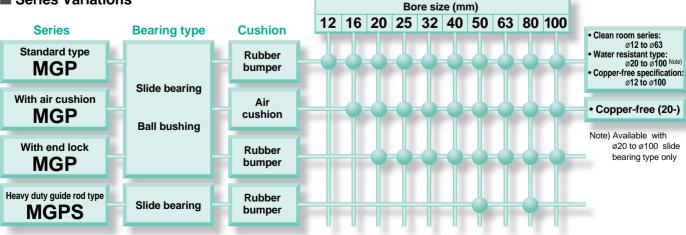
• An air cushion has been added to the compact guide cylinder to suppress vibration and noise at the stroke end. It can absorb nearly three times as much kinetic energy as a rubber bumper.

Cushion valve is built into the body

Stroke Variations

Bearing type	Bore size (mm)				5	Stroke	(mm)				Intermediate strokes
		2	25	50	75	100	125	150	175	200	
	16	—	-	-	+		+	+	+	+	
	20	—	—	-	+	-∳-	-	-	-		
MGPM	25	—	—	+ -	+		-	-	-	-	Otrodora available
Slide bearing	32	_	—	-	•		-	-∳-	-	-	Strokes available in 1mm increments
	40	—	—	-	+	-∳-	-		-		by changing the
	50	—	—	-	•		-	-∳-	-	-	collar.
MGPL Ball bushing	63	—	—	-	•	-∳-	-	-	-		
Buil Busining	80		\vdash	+ -	+				- -		
	100		┝	-	•		+	+	•	+	

Heavy duty guide rod type with improved load resistance

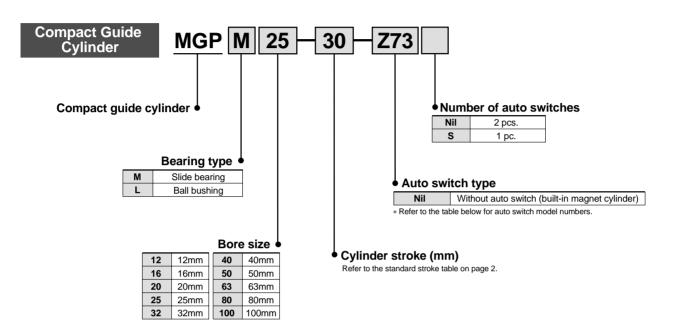

- Lateral load resistance: 10% increase
- Eccentric load resistance: 25% increase
- Impact load resistance: 140% increase (Compared with MGPM50 compact guide cylinder)

Bore size	Guide rod di	ameter (mm)
(mm)	MGPS	MGPM
50	30	25
80	45	30

■ Stroke Variations

Bearing type	Bore size (mm)				Stroke	(mm)				
		25	50	75	100	125	150	175	20	0
MGPS	50	-	-∳-	-		- -	-	-	-	_
Slide bearing	80	-	-	-	┿	-	-	-	-	_

■ Series Variations



Compact Guide Cylinder Series MGP

Ø12, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

How to Order

Applicable auto switches

					L	oad vo	tage	Auto swite	ch model	Lead wii	e length	(m) Note 1)			
Type	Special function	Electrical	Indicator	Wiring		ıC	AC	Electrical en	try direction	0.5 3		5	Applical	ole load	Detailed specifications
		entry	light	(output)			٨٥	Perpendicular In-line		(Nil)	(L)	(Z)			9
			.,	3 wire	_	5V	_	_	Z 76	•	•	_	IC circuit	_	
Reed switch	_	Grommet	Yes	2 wire	24V	12V	100V	_	Z73	•	•	•	_	Relay,	P. 59
			No	2 wire	24V	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC	
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC		
	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit		P. 60
				2 wire		12V		Y69B	Y59B	•	•	0	_		
Solid state	Diagnostic	Grommet	Yes	3 wire (NPN)	4)/ 5V		Y7NWV	Y7NW	•	•	0	IC	Relay,		
switch	indication (2 colour	Grommet	165	3 wire (PNP)	240	12V	_	Y7PWV	Y7PW	•	•	0	circuit	PLC	P. 61
	indicator)					12V		Y7BWV	Y7BW	•	•	0			
	Water resistant (2 colour indicator)			2 wire				_	Ү 7ВА		•	0	_		P. 62
	Magnetic field resistant (2 colour indicator)					_		_	P5DW Note 3)		•	•			P. 63

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B

Y69BZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-P5DW cannot be mounted on bore sizes of ø32 or less.

Series MGP

Specifications

Action		Double acting						
Fluid		Air						
Proof pressure		1.5MPa						
Maximum operating pressure		1.0MPa						
Minimum operating pressure	ø12, ø16	0.12MPa						
willimum operating pressure	ø20 to ø100	0.1MPa						
Ambient and fluid temperature		-10 to 60°C (with no freezing)						
Dieter anad	ø12 to ø63	50 to 500mm/s						
Piston speed	ø80, ø100	50 to 400mm/s						
Cushion		Rubber bumper at both ends						
Lubrication		Non-lube						
Stroke length tolerance	^{+1.5} mm							

Standard Strokes

Bore size (mm)	Standard stroke (mm)
12, 16	10, 20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250
20, 25	20, 30, 40, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400
32 to 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a stal • ø12 to 32 : Available in 1m • ø40 to 100: Available in 5m	m stroke increments	Special body type (-XB10) A special body is manufactured for the specified stroke. • All bore sizes are available in 1mm increments					
Part number	Refer to standard part numbers	and ordering procedure.	Indicate -XB10 at the end of the standard model no. Refer to P.52 for order made specifications.					
Applicable	ø12, ø16	1 to 249	ø 12, ø 16 11 to 249					
stroke	ø20, ø25, ø32	1 to 399	ø 20 , ø 25 21 to 399					
(mm)	ø40 to ø100	5 to 395	ø 32 to ø 100	26 to 399				
Example	Part no.: MGPM20—39 A spacer 1mm in width is MGPM20—40. C dimens		Part no.: MGPM20—39—XB10 Special body manufactured for 39mm stroke. C dimension is 76mm.					

Note) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch.

OUT

Auto switch mounting bracket part no. for D-P5DW

Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x 0.45 x 8ℓ) 2 pcs. Hexagon socket head cap screw (M3 x 0.5 x 16ℓ) 2 pcs. Spring washer (nominal size 3)

Theoretical Output

								→ [-		(N)
Rod	Operating	Piston area			Op	erating	pressu	ıre (MF	Pa)		
(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
6	OUT	113	23	34	45	57	68	79	90	102	113
	IN	85	17	26	34	43	51	60	68	77	85
Q	OUT	201	40	60	80	101	121	141	161	181	201
	IN	151	30	45	60	76	91	106	121	136	151
10	OUT	314	63	94	126	157	188	220	251	283	314
10	IN	236	47	71	94	118	142	165	189	212	236
12	OUT	491	98	147	196	246	295	344	393	442	491
12	IN	378	76	113	151	189	227	265	302	340	378
16	OUT	804	161	241	322	402	482	563	643	724	804
10	IN	603	121	181	241	302	362	422	482	543	603
16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
10	IN	1056	211	317	422	528	634	739	845	950	1056
20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
20	IN	1649	330	495	660	825	990	1154	1319	1484	1649
20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
20	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854
	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147
	size	Size (mm) Girection	size (mm) direction (mm²) 6 OUT 113 10 IN 85 10 IN 151 10 IN 236 12 IN 378 16 IN 603 16 IN 603 10 1257 IN 1056 20 IN 1649 20 IN 1649 20 IN 2803 OUT 5027 IN 4536 OUT 7854	size (mm) direction direction (mm²) 0.2 6 OUT 113 23 10 IN 85 17 0UT 201 40 10 IN 151 30 10 IN 236 47 12 IN 236 47 12 IN 378 76 OUT 804 161 IN 603 121 16 IN 1056 211 20 IN 1963 393 IN 1649 330 20 IN 2803 561 25 IN 2803 561 OUT 7854 1571	size (mm) direction direction (mm²) 0.2 0.3 6 OUT 113 23 34 1N 85 17 26 8 OUT 201 40 60 10 IN 151 30 45 10 IN 236 47 71 12 IN 236 47 71 12 IN 378 76 113 16 IN 603 121 181 16 IN 603 121 181 16 IN 1056 211 317 20 IN 1963 393 589 IN 1649 330 495 20 IN 2803 561 841 25 IN 2803 561 841 25 IN 4536 907 1361 30 OUT 7854 1571 2356 <td>size (mm) direction (mm²) 0.2 0.3 0.4 6 IN 85 17 26 34 8 IN 85 17 26 34 10 IN 201 40 60 80 10 IN 151 30 45 60 10 IN 236 47 71 94 12 IN 236 47 71 94 12 IN 378 76 113 151 16 IN 603 121 181 241 16 IN 603 121 181 241 16 IN 1056 211 317 422 20 IN 1963 393 589 785 IN 1649 330 495 660 20 IN 1649 330 495 660 20 IN 2803</td> <td>size (mm) direction (mm²) 0.2 0.3 0.4 0.5 6 OUT 113 23 34 45 57 IN 85 17 26 34 43 8 OUT 201 40 60 80 101 10 IN 151 30 45 60 76 10 IN 236 47 71 94 118 12 IN 378 76 113 151 189 16 IN 378 76 113 151 189 16 IN 603 121 181 241 302 16 IN 603 121 181 241 302 16 IN 1056 211 317 422 528 20 IN 1649 330 495 660 825 20 IN 1649 330</td> <td>size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 6 IN 85 17 26 34 43 51 8 IN 85 17 26 34 43 51 10 IN 201 40 60 80 101 121 10 OUT 314 63 94 126 157 188 10 IN 236 47 71 94 118 142 12 IN 378 76 113 151 189 227 16 IN 378 76 113 151 189 227 16 IN 603 121 181 241 302 362 16 IN 603 121 181 241 302 362 16 IN 1056 211 317 422 528 634</td> <td>size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 0.7 6 IN 85 17 26 34 43 51 60 8 OUT 201 40 60 80 101 121 141 10 IN 151 30 45 60 76 91 106 10 OUT 314 63 94 126 157 188 220 12 IN 236 47 71 94 118 142 165 12 IN 378 76 113 151 189 227 265 34 IN 378 76 113 151 189 227 265 34 IN 603 121 181 241 302 362 422 36 IN 603 121 181 241 302 362 422</td> <td>size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 6 OUT 113 23 34 45 57 68 79 90 1N 85 17 26 34 43 51 60 68 1N 151 30 45 60 76 91 106 121 10 IN 236 47 71 94 118 142 165 189 12 IN 378 76 113 151 189 227 265 302 16 OUT 491 98 147 196 246 295 344 393 16 IN 378 76 113 151 189 227 265 302 16 IN 603 121 181 241 302 362 422 482 16 IN</td> <td> Size (mm) Girection Girm²) </td>	size (mm) direction (mm²) 0.2 0.3 0.4 6 IN 85 17 26 34 8 IN 85 17 26 34 10 IN 201 40 60 80 10 IN 151 30 45 60 10 IN 236 47 71 94 12 IN 236 47 71 94 12 IN 378 76 113 151 16 IN 603 121 181 241 16 IN 603 121 181 241 16 IN 1056 211 317 422 20 IN 1963 393 589 785 IN 1649 330 495 660 20 IN 1649 330 495 660 20 IN 2803	size (mm) direction (mm²) 0.2 0.3 0.4 0.5 6 OUT 113 23 34 45 57 IN 85 17 26 34 43 8 OUT 201 40 60 80 101 10 IN 151 30 45 60 76 10 IN 236 47 71 94 118 12 IN 378 76 113 151 189 16 IN 378 76 113 151 189 16 IN 603 121 181 241 302 16 IN 603 121 181 241 302 16 IN 1056 211 317 422 528 20 IN 1649 330 495 660 825 20 IN 1649 330	size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 6 IN 85 17 26 34 43 51 8 IN 85 17 26 34 43 51 10 IN 201 40 60 80 101 121 10 OUT 314 63 94 126 157 188 10 IN 236 47 71 94 118 142 12 IN 378 76 113 151 189 227 16 IN 378 76 113 151 189 227 16 IN 603 121 181 241 302 362 16 IN 603 121 181 241 302 362 16 IN 1056 211 317 422 528 634	size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 0.7 6 IN 85 17 26 34 43 51 60 8 OUT 201 40 60 80 101 121 141 10 IN 151 30 45 60 76 91 106 10 OUT 314 63 94 126 157 188 220 12 IN 236 47 71 94 118 142 165 12 IN 378 76 113 151 189 227 265 34 IN 378 76 113 151 189 227 265 34 IN 603 121 181 241 302 362 422 36 IN 603 121 181 241 302 362 422	size (mm) direction (mm²) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 6 OUT 113 23 34 45 57 68 79 90 1N 85 17 26 34 43 51 60 68 1N 151 30 45 60 76 91 106 121 10 IN 236 47 71 94 118 142 165 189 12 IN 378 76 113 151 189 227 265 302 16 OUT 491 98 147 196 246 295 344 393 16 IN 378 76 113 151 189 227 265 302 16 IN 603 121 181 241 302 362 422 482 16 IN	Size (mm) Girection Girm²)

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

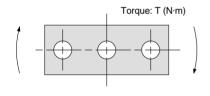
Compact Guide Cylinder Series MGP

Weights

Slide bearing: MGPM12 to 100

(kg)

Bore size	Madal		Standard stroke (mm)														
(mm)	Model	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400
12	MGPM12	0.24	0.28	_	0.31	0.35	0.39	0.50	0.59	0.70	0.79	0.89	0.98	1.17	_	_	_
16	MGPM16	0.33	0.38	_	0.43	0.48	0.53	0.68	0.80	0.97	1.09	1.22	1.35	1.60	_	_	_
20	MGPM20	_	0.67		0.75	0.83	0.91	1.17	1.37	1.57	1.76	1.96	2.16	2.63	3.03	3.42	3.82
25	MGPM25	_	0.95	_	1.05	1.16	1.27	1.65	1.92	2.19	2.47	2.74	3.01	3.67	4.21	4.76	5.30
32	MGPM32	_	_	1.69	_	_	2.07	2.47	2.85	3.24	3.62	4.00	4.38	5.33	6.09	6.86	7.62
40	MGPM40	_	_	1.95		_	2.37	2.83	3.25	3.68	4.10	4.53	4.95	5.99	6.85	7.70	8.55
50	MGPM50	_	_	3.36		_	4.00	4.73	5.37	6.01	6.65	7.29	7.93	9.54	10.8	12.1	13.4
63	MGPM63	_	_	4.18		_	4.94	5.78	6.54	7.29	8.05	8.80	9.56	11.4	12.9	14.4	15.9
80	MGPM80	_	_	6.49	_	_	7.43	8.67	9.61	10.5	11.5	12.4	13.4	15.8	17.7	19.5	21.4
100	MGPM100	_	_	10.5	_	_	11.9	13.6	14.9	16.3	17.6	18.9	20.2	23.6	26.2	28.9	31.5
100	MGPM100	_	_	10.5			11.9	13.6	14.9	16.3	17.6	18.9	20.2	23.6	26.2	28.9	31.5


Ball bushing: MGPL12 to 100

(kg)

Bore size	Madal		Standard stroke (mm)														
(mm)	Model	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400
12	MGPL12	0.24	0.27		0.30	0.35	0.39	0.47	0.56	0.66	0.74	0.83	0.91	1.08	_	_	_
16	MGPL16	0.34	0.39		0.43	0.51	0.56	0.67	0.79	0.93	1.04	1.16	1.28	1.50	_	_	_
20	MGPL20		0.70	_	0.77	0.89	0.97	1.14	1.31	1.52	1.69	1.87	2.04	2.42	2.77	3.12	3.47
25	MGPL25	1	0.98		1.07	1.25	1.34	1.57	1.81	2.08	2.31	2.54	2.77	3.27	3.74	4.20	4.66
32	MGPL32	-	_	1.54	_	1	1.85	2.30	2.62	2.99	3.31	3.62	3.94	4.63	5.26	5.89	6.52
40	MGPL40		_	1.79	_	1	2.15	2.64	3.00	3.42	3.78	4.14	4.50	5.28	6.00	6.72	7.44
50	MGPL50		_	3.11	_		3.66	4.41	4.96	5.60	6.15	6.70	7.25	8.48	9.57	10.7	11.8
63	MGPL63		_	3.93		l	4.59	5.46	6.12	6.88	7.54	8.21	8.87	10.3	11.7	13.0	14.3
80	MGPL80		_	6.25			7.39	8.69	9.51	10.3	11.1	12.0	12.8	14.7	16.3	18.0	19.6
100	MGPL100		_	9.89	_	_	11.6	13.4	14.5	15.7	16.9	18.1	19.3	21.9	24.2	26.6	28.9

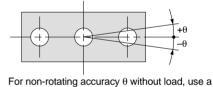
Allowable Rotational Torque of Plate

Non-rotating Accuracy of Plate

Bearing

MGPM

MGPL


MGPL

7.00

6.55

Bore size

40

value no more than the values in the table as a

Non-rotating accuracy θ

T (N·m)

	(mm)	type	10	20	25	30	40	50	75	100	125	150	175	200	250	300	350	400	(
	12	MGPM	0.39	0.32	_	0.27	0.24	0.21	0.43	0.36	0.31	0.27	0.24	0.22	0.19	_	_		
	12	MGPL	0.61	0.45	_	0.35	0.58	0.50	0.37	0.29	0.24	0.20	0.18	0.16	0.12	_	_	_	
Ī	16	MGPM	0.69	0.58	_	0.49	0.43	0.38	0.69	0.58	0.50	0.44	0.40	0.36	0.30	_	_	_	
	10	MGPL	0.99	0.74	_	0.59	0.99	0.86	0.65	0.52	0.43	0.37	0.32	0.28	0.23	_	_		
	20	MGPM	-	1.05	_	0.93	0.83	0.75	1.88	1.63	1.44	1.28	1.16	1.06	0.90	0.78	0.69	0.62	
	20	MGPL	_	1.26	_	1.03	2.17	1.94	1.52	1.25	1.34	1.17	1.03	0.93	0.76	0.65	0.56	0.49	
	25	MGPM	_	1.76	_	1.55	1.38	1.25	2.96	2.57	2.26	2.02	1.83	1.67	1.42	1.24	1.09	0.98	
	23	MGPL	-	2.11	_	1.75	3.37	3.02	2.38	1.97	2.05	1.78	1.58	1.41	1.16	0.98	0.85	0.74	
	32	MGPM	-	_	6.35	_	_	5.13	5.69	4.97	4.42	3.98	3.61	3.31	2.84	2.48	2.20	1.98	
	32	MGPL			5.95			4.89	5.11	4.51	6.34	5.79	5.33	4.93	4.29	3.78	3.38	3.04	

Stroke (mm)

DOIG SIZE	Tron rotating accuracy o				
(mm)	MGPM	MGPL			
12	±0.08°	±0.10°			
16	±0.06	±0.10			
20	±0.07°	±0.09°			
25	±0.07	±0.09			
32	±0.06°	±0.08°			
40	±0.00	±0.00			
50	±0.05°	±0.06°			
63	±0.05	±0.00			
80	±0.04°	±0.05°			
100	±0.04	±0.05			

MGPM 13.0 10.8 12.0 10.6 9.50 8.60 7.86 7.24 6.24 5.49 4.90 4.43 50 MGPL 9.17 7.62 9.83 8.74 11.6 10.7 9.83 9.12 7.95 7.02 6.26 5.63 MGPM 14.7 12.1 13.5 11.9 10.7 9.69 8.86 8.16 7.04 6.19 5.52 4.99 63 MGPL 10.2 8.48 11.0 9.74 13.0 11.9 11.0 10.2 8.84 7.80 6.94 6.24 **MGPM** 21.9 18.6 22.9 20.5 18.6 17.0 15.6 14.5 12.6 11.2 10.0 9.11 80 **MGPL** 15.1 23.3 22.7 20.6 18.9 17.3 16.0 14.8 12.9 11.3 10.0 MGPM 38.8 33.5 37.5 33.8 30.9 28.4 26.2 24.4 21.4 19.1 17.2 100

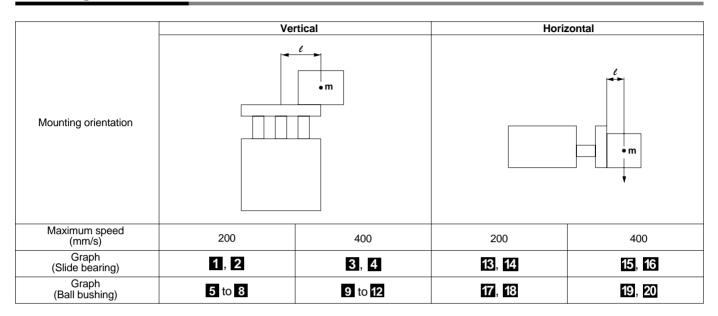
30.6 37.9 34.6 31.8 29.3

5.66 | 6.27 | 5.48 | 4.87 | 4.38 | 3.98 | 3.65 | 3.13 | 2.74 | 2.43 | 2.19

5.39 | 5.62 | 4.96 | 6.98

6.38

5.87


5.43

4.72 | 4.16 | 3.71 | 3.35

Series MGP **Model Selection**

Selecting Conditions

Selection Example 1 (Vertical Mounting)

Selecting conditions

Mounting: Vertical Bearing type: Ball bushing

Stroke: 30mm

Maximum speed: 200mm/s Load weight: 3kg Eccentric distance: 90mm

Find the point of intersection for the load weight of 3kg and the eccentric distance of 90mm on graph 5, based on vertical mounting, ball bushing, 30mm stroke, and the speed of 200mm/s.

→MGPL25-30 is selected.

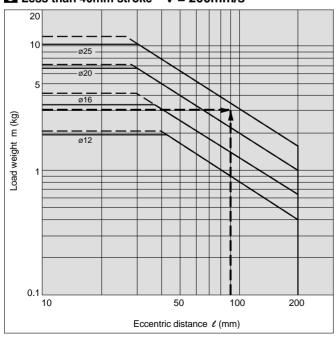
Selection Example 2 (Horizontal Mounting)

Selecting conditions

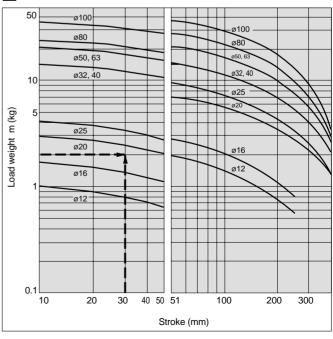
Mounting: Horizontal Bearing type: Slide bearing

Distance between plate and load center of gravity: 50mm

Maximum speed: 200mm/s


Load weight: 2kg

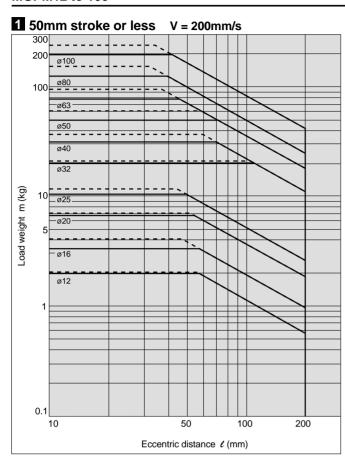
Stroke: 30mm

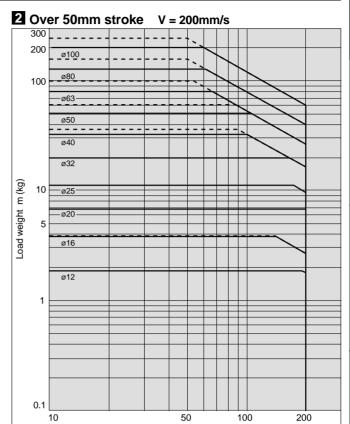

Find the point of intersection for the load weight of 2kg and stroke of 30mm on graph [3], based on horizontal mounting, slide bearing, the distance of 50mm between the plate and load center of gravity, and the speed of 200mm/s.

→MGPM20-30 is selected.

5 Less than 40mm stroke V = 200mm/s

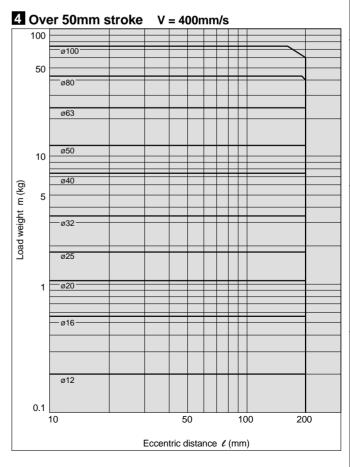
13 $\ell = 50$ mm V = 200mm/s


Compact Guide Cylinder Series MGP

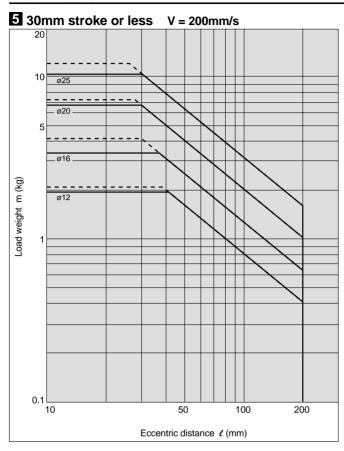

Operating pressure: 0.4MPa

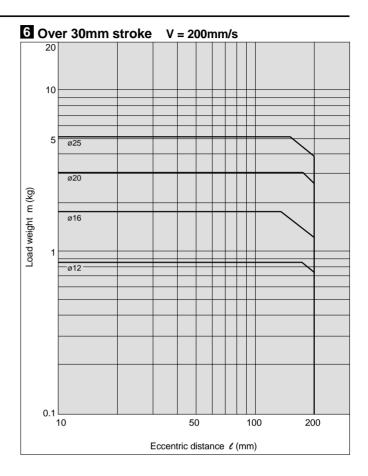
- - - - Operating pressure: 0.5MPa or more

Vertical Mounting Slide Bearing

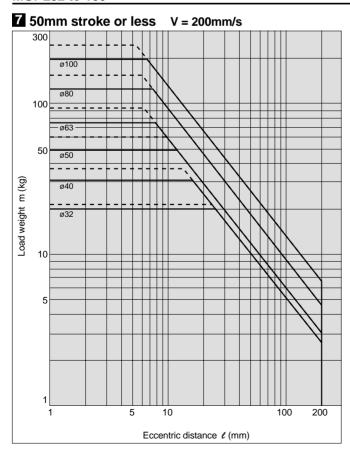

MGPM12 to 100

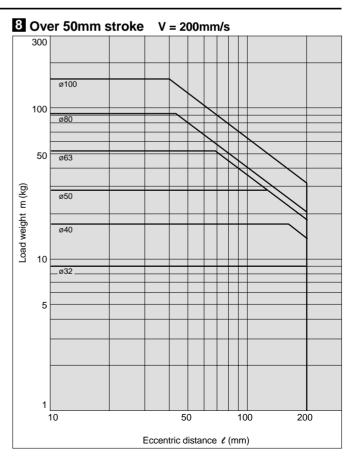
Eccentric distance ℓ (mm)



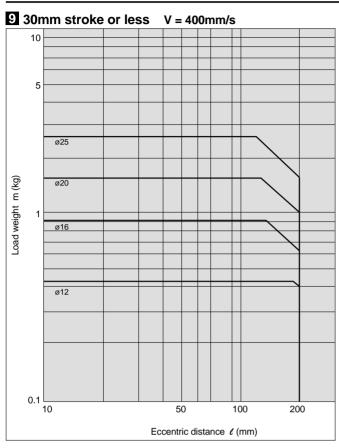


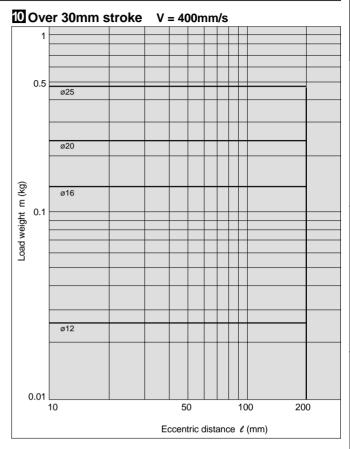
Vertical Mounting Ball Bushing


Operating pressure: 0.4MPa ---- Operating pressure: 0.5MPa or more

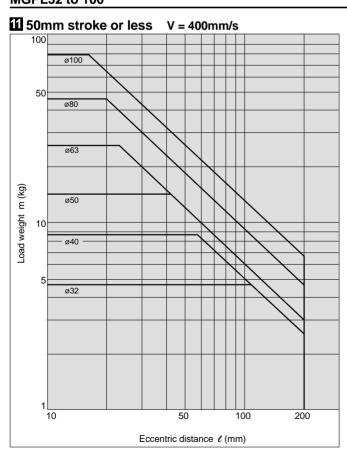

MGPL12 to 25

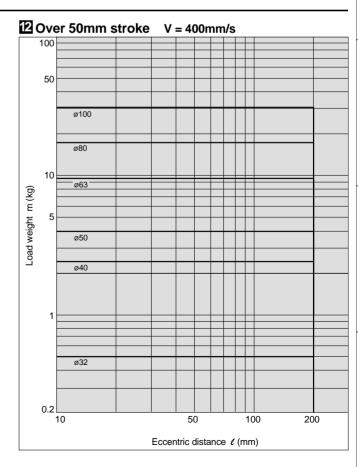
MGPL32 to 100



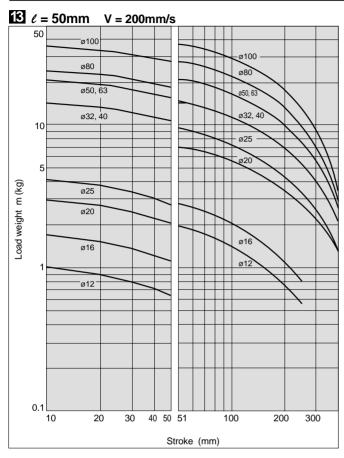

Compact Guide Cylinder Series MGP

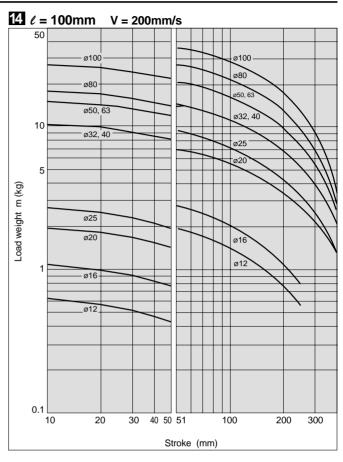
Vertical Mounting Ball Bushing

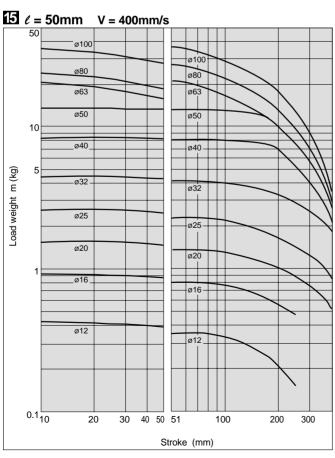

Operating pressure: 0.4MPa

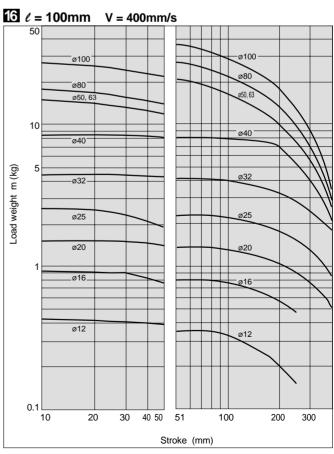

MGPL12 to 25

MGPL32 to 100

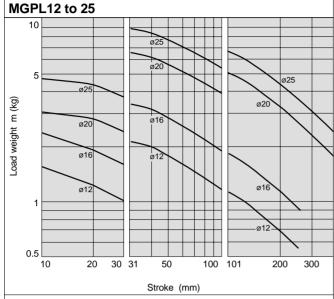


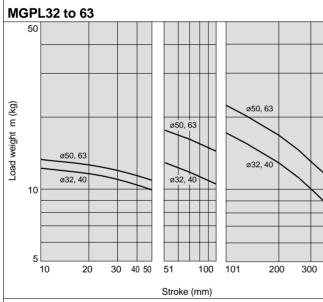


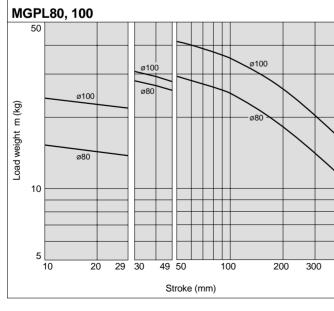



Horizontal Mounting Slide Bearing

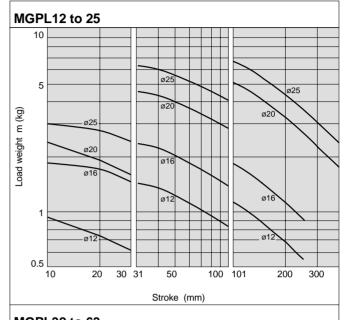
MGPM12 to 100

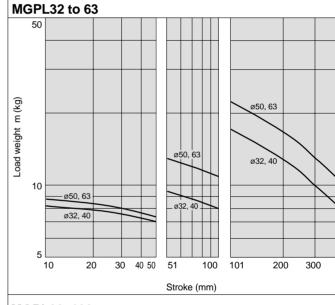


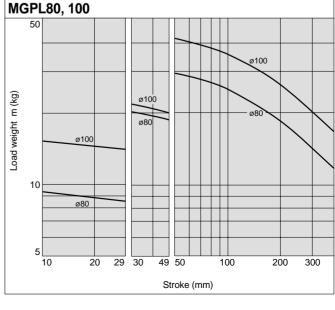



Compact Guide Cylinder Series MGP

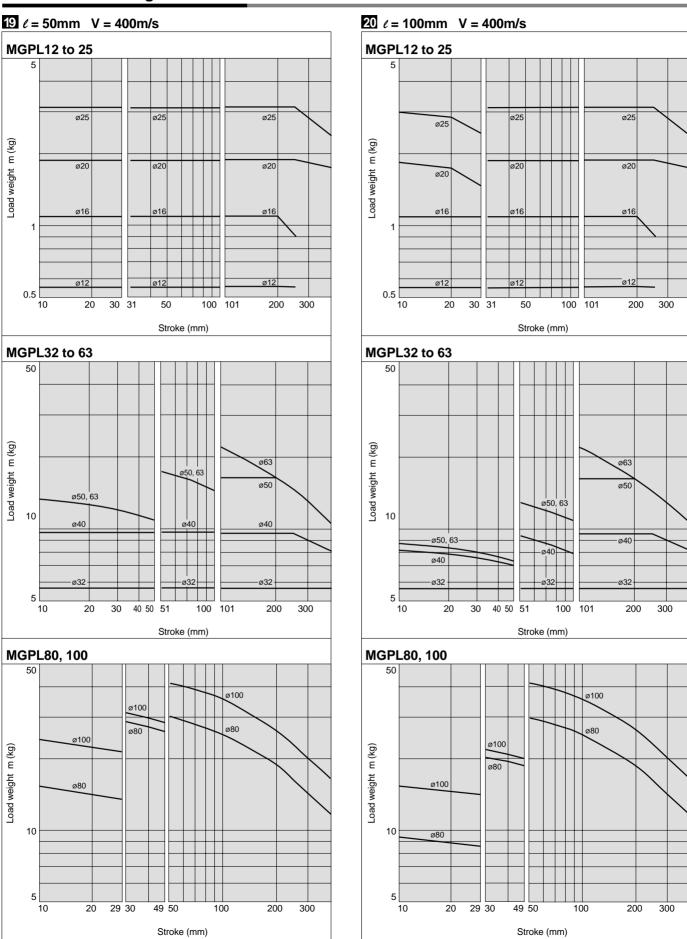
Horizontal Mounting Ball Bushing

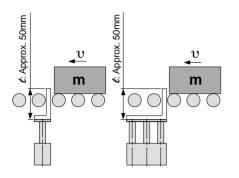

$17 \ell = 50 \text{mm} \quad V = 200 \text{m/s}$





18 $\ell = 100$ mm V = 200m/s



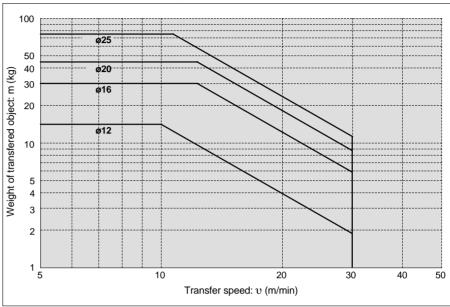

Horizontal Mounting Ball Bushing

Compact Guide Cylinder Series MGP

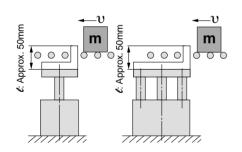
Operating Range when Used as Stopper

Bore Sizes Ø12 to 25/MGPM12 to 25 (Slide bearing)

* When selecting a model with a longer ℓ dimension, be sure to choose a bore size which is sufficiently large.


⚠ Caution

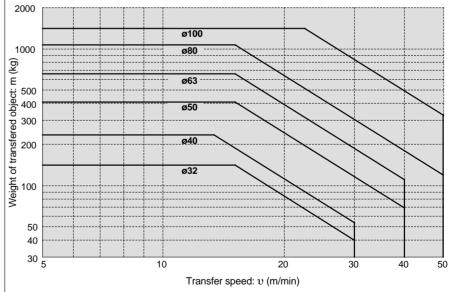
Handling precautions


Note 1) When using as a stopper, select a model with a stroke of 30mm or less.

Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

Bore Sizes ø32 to 100/MGPM32 to 100 (Slide bearing)

* When selecting a model with a longer ℓ dimension, be sure to choose a bore size which is sufficiently large.


∆ Caution

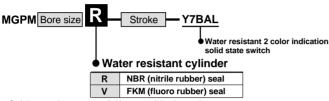
Handling precautions

Note 1) When using as a stopper, select a model with a stroke of 50mm or less.

Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

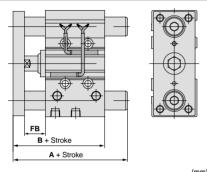
MGPM32 to 100 (Slide bearing)

1. Water Resistant


Ideal for use in a machine tool envrionment exposed to coolants. Also applicable for use in an environment with water splashing such as food processing and car wash equipment, etc.

Specifications

Applicable series		MGPM		
Bearing type		Slide bearing		
Bore size (mm)		20, 25, 32, 40, 50, 63, 80, 100		
Cushion	MGPM□R	Rubber cushion		
Custillott	MGPM□V	Without cushion		


^{*} Specifications other than above are identical to the standard basic type

How to Order

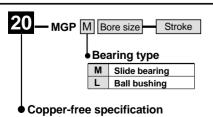
^{*} Stainless steel parts are available as special order products

Dimensions

				(mm)
Bore size		Α	,	
(mm)	50mm stroke or less	51mm stroke or more	В	FB
20	66	97.5	66	19
25	67.5	99	67.5	20
32	109	114	71.5	22
40	109	114	78	22
50	117.5	129	83	23
63	117.5	129	88	23
80	121	148	102.5	24
100	141	166	120	29

^{*} Other dimensions are identical to the standard type

2. Copper-free Series (applicable to CRT manufacturing process)


To prevent the influence of copper ions or halogen ions during CRT manufacturing processes, copper and fluorine materials are not used as component parts.

Specifications

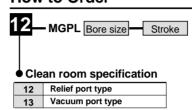
Applicable series	MGPM	MGPL	
Bearing type Slide bearing Ball bushin			
Bore size (mm)	· · ·	0, 25, 32 3, 80, 100	

^{*} Specifications and dimensions other than above are identical to the standard basic type

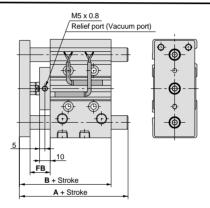
How to Order

3. Clean Room Series

Applicable in a clean room environment.


Ideal for use in conveyor lines for semi-conductor (LSI), liquid crystal (LCD), food processing, pharmaceutical, and electronic parts, etc.

Specifications


Applicable series	MGPL							
Bearing type	Ball bushing							
Bore size (mm)	12	16	20	25	32	40	50	63
Stroke (mm)	10 to 100		20 to 200			25 to	200	

^{*} Specifications other than above are identical to the standard basic type

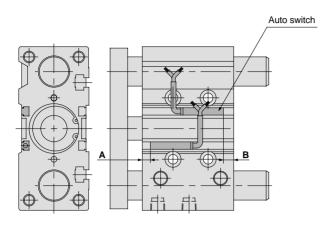
How to Order

Dimensions

(mm)

Bore size		Α			
(mm)	30mm stroke or less	Over 30mm to 100mm stroke	Over 100mm stroke	В	FB
12	56	68	_	55	18
16	62	78	_	59	18
20	76	93	117	66	19
25	82.5	98.5	117.5	66.5	19

(mm)

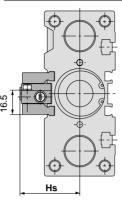

Doro oine		Α			
Bore size (mm)	50mm stroke or less	Over 50mm to 100mm stroke	Over 100mm stroke	В	FB
32	93	110	130	71.5	22
40	93	110	130	78	22
50	104	125	145	83	23
63	104	125	145	88	23

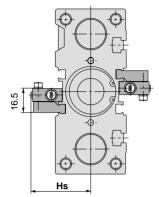
^{*} Other dimensions are identical to the standard type

Compact Guide Cylinder Series MGP

Auto Switches/Proper Mounting Position for Stroke End Detection

Bore size (mm)


50


63

80

100

For D-P5DW (* Cannot be mounted on bore sizes $\emptyset 32$ or less.) ø40 to ø63

Ø80, Ø100

(mm) В

9.5

11.5

18.5

23.5

14

Α

9.5

7.5

10

13

17.5

For 25mm stroke

* For bore sizes ø40 through 63 with two switches one switch is mounted on each

ž	
,	
	Hs

		(mm)			
Bore size (mm)	Hs	Ht			
40	44.5	_			
50	50	_			
63	57	_			
80	60.7	84.4			
100	70.8	96.1			
Minimum manufalla ataulus fan auta					

Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

Auto Switch Mounting

Proper mounting position (mm)

5mm or more for one switch

Α

1.5

4.5

4.5

5.5

В

8

Note 2) Type D-P5DW can be mounted only on bore sizes ø40 through ø100.

Note 1) Minimum mountable strokes for auto switch are 10mm or more for two switches, and

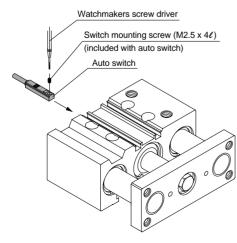
Bore size (mm)

12 16

20

25

32


⚠ Caution

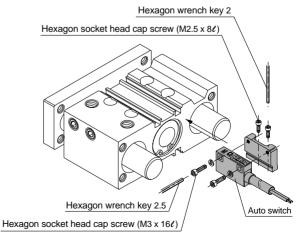
Auto switch mounting tool

• When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter.

Tightening torque

• Tighten with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

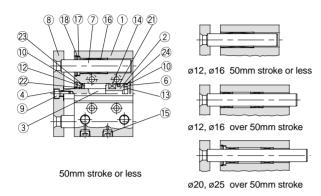
For D-P5DW


⚠ Caution

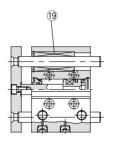
Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

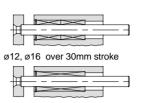
Tightening torque


• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

Construction


Series MGPM

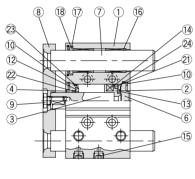
MGPM12 to 25



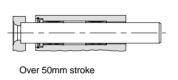
Series MGPL

MGPL12 to 25

30mm stroke or less

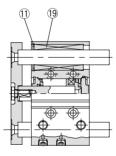


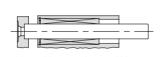
ø20, ø25 over 30mm to 100mm stroke



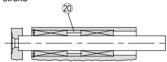
ø20, ø25 over 100mm stroke

MGPM32 to 100


50mm stroke or less



ø50 or larger


MGPL32 to 100

50mm stroke or less

ø32 to ø63 over 50mm to100mm stroke ø80, ø100 over 50mm stroke to 200mm

ø32 to ø63 over 100mm stroke ø80, ø100 over 200mm stroke

Parts list

· dito not						
No.	Description	Material	Note			
1	Body	Aluminum alloy	Hard anodized			
2	Piston	Aluminum alloy	Ch	romated		
3	Piston rod	Stainless steel	ø12 to ø25			
	PISION TOU	Carbon steel	ø32 to ø100	Hard chrome plated		
4	Collar	Aluminum bearing alloy	ø12 to ø40	Clear anodized		
	Collai	Aluminum alloy casting	ø50 to ø100	Coated		
5	Bushing	Lead bronze casting	ø50 to ø100			
6	Head cover	Aluminum alloy	ø12 to ø63	Clear chromated		
	i lead cover	Aluminum alloy	ø80 to ø100	Coated		
7	Guide rod	Carbon steel	Hard ch	nrome plated		
8	Plate	Carbon steel	Nicl	kel plated		
9	Plate mounting bolt	Carbon steel	Nicl	kel plated		
10	Snap ring	Carbon tool steel	Phosp	hate coated		
11	Snap ring	Carbon tool steel Phosphate coated		hate coated		

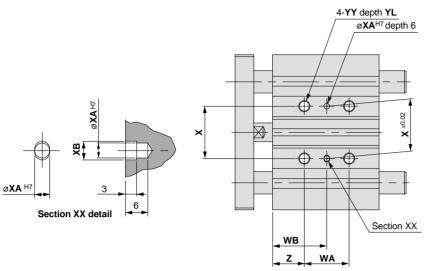
Replacement parts: Seal kits

Bore size (mm)	Order No.	Contents			
12	MGP12-PS				
16	MGP16-PS				
20	MGP20-PS	Kits include items			
25	MGP25-PS	21, 22, 23, and 24 from the table above.			
32	MGP32-PS	1			

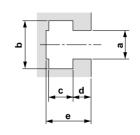
^{*} Seal kits are sets consisting of items 21 through 24 above, and can be ordered using the order number for each bore size.

Parts list

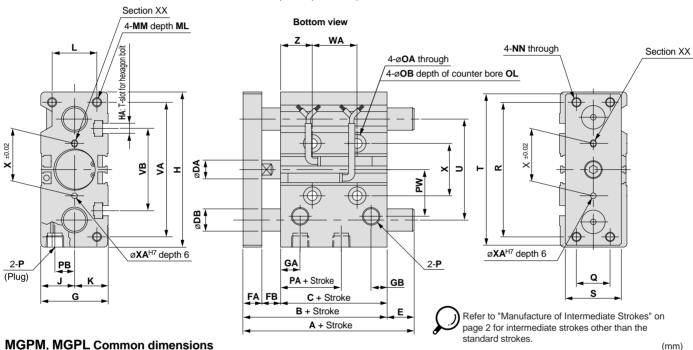
No.	Description	Material	Not	e
12	Bumper A	Urethane		
13	Bumper B	Urethane		
14	Magnet	Synthetic rubber		
15	Plug (M-5P)	Brass	ø12, ø16	Nickel plated
13	Hexagon socket head taper plug	Carbon steel	ø20 to ø100	Nickel plated
16	Slide bearing	Lead bronze casting		
17	Felt	Felt		
18	Holder	Resin		
19	Ball bushing			
20	Spacer	Aluminum alloy		
21*	Piston seal	NBR		
22*	Rod seal	NBR		
23*	Gasket A	NBR		
24*	Gasket B	NBR		


Replacement parts: Seal kits

Bore size (mm)	Order no.	Contents
40	MGP40-PS	
50	MGP50-PS	Kits include items
63	MGP63-PS	21, 22, 23, and 24 from the table above.
80	MGP80-PS	21, 22, 23, and 24 from the table above.
100	MGP100-PS	



Compact Guide Cylinder Series MGP


Ø12 to Ø25/MGPM, MGPL

T-slot dimensions

					(mm)
Bore size (mm)	а	b	С	d	е
12	4.4	7.4	3.7	2	6.2
16	4.4	7.4	3.7	2.5	6.7
20	5.4	8.4	4.5	2.8	7.8
25	5.4	8.4	4.5	3	8.2

MGPM, MGPL Common dimensions

Bore size Standard stroke С DA FA FB G GA GB Н НА Κ MM ML NN OA OB OL PA PB PW (mm) (mm) 12 8 5 26 11 7.5 58 M4 13 13 18 M4 x 0.7 10 M4 x 0.7 4.3 4.5 M5 x 0.8 13 18 42 29 6 8 8 10, 20, 30, 40, 50, 75, 100 16 125, 150, 175, 200, 250 46 33 5 30 64 M4 15 15 22 M5 x 0.8 12 M5 x 0.8 4.3 4.5 15 10 8 8 11 8 8 20, 30, 40, 50, 75, 100 125, 150, 175, 200 18 24 M5 x 0.8 13 M5 x 0.8 5.6 9.5 5.5 20 53 37 10 10 6 36 | 10.5 | 8.5 | 83 | M5 | 18 Rc 1/8 | 12.5 | 10.5 | 25 93 M5 21 21 30 M6 x 1.0 15 M6 x 1.0 5.6 9.5 5.5 25 53.5 37.5 12 10 6 42 | 11.5 | 9 Rc 1/8 | 12.5 | 13.5 | 28.5 250, 300, 350, 400

Bore size	_			_						WA					WB			.,			VV		_
(mm)	Q	R	S	'	U	VA	VB	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st to 300st	Over 300st	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st to 300st	Over 300st	Х	XA	ХВ	YY	YL	
12	14	48	22	56	41	50	37	20	40	110	200	_	15	25	60	105	_	23	3	3.5	M5 x 0.8	10	5
16	16	54	25	62	46	56	38	24	44	110	200	_	17	27	60	105		24	3	3.5	M5 x 0.8	10	5
20	18	70	30	81	54	72	44	24	44	120	200	300	29	39	77	117	167	28	3	3.5	M6 x 1.0	12	17
25	26	78	38	91	64	82	50	24	44	120	200	300	20	30	77	117	167	34	4	45	M6 v 1 0	12	17

(mm)

MGPM (slide bearing)/Dimensions A, DB, E

Bore size		Α		DB		Е	
(mm)	50st or less	Over 50st to 100st	Over 100st		50st or less	Over 50st to 100st	Over 100st
12	42	60.5	85	8	0	18.5	43
16	46	64.5	95	10	0	18.5	49

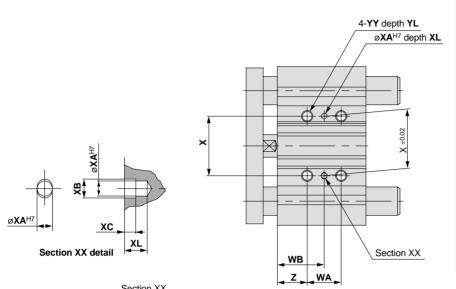
MGPM ((slide l	bearing)	/Dimens	ions A	A, DB,	E	(mm)	

IVIOI IVI	(Silide bi	cai ii iy <i>ji</i>	Dilliella	IUII	3 A, DD	_	(111111)
Bore size		Α		DB		Е	
(mm)	50st or less	Over 50st to 200st	Over 200st	סט	50st or less	Over 50st to 200st	Over 200st
20	53	84.5	122	12	0	31.5	69
25	53.5	85	122	16	0	31.5	68.5

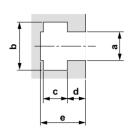
MGPL (ball bushing)/Dimensions A, DB, E

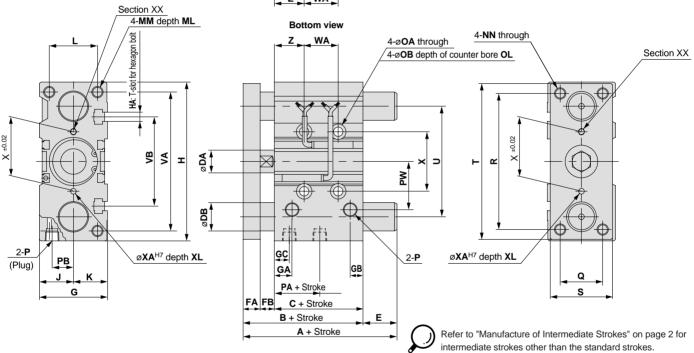
Bore size		Α		DB		E	
(mm)	30st or less	Over 30st to 100st	Over 100st		30st or less	Over 30st to 100st	Over 100st
12	43	55	85	6	1	13	43
16	49	65	95	8	3	19	49

MGPL (ball bushing)/Dimensions A, DB, E


Bore size			Α		DB		E	•	
(mm)	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	סט	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st
20	63	80	104	122	10	10	27	51	69
25	69.5	85.5	104.5	122	13	16	32	51	68.5

(mm)


(mm)


Ø32 to Ø63/MGPM, MGPL

T-slot dimensions

					(mm)
Bore size (mm)	а	b	С	d	е
32	6.5	10.5	5.5	3.5	9.5
40	6.5	10.5	5.5	4	11
50	8.5	13.5	7.5	4.5	13.5
63	11	17.8	10	7	18.5

MGPM, MGPL Common dimensions

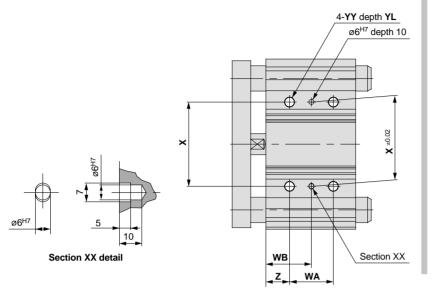
(mm)

Bore size (mm)	Sta		d stro m)	oke	В	С	DA	FA	FB	G	GA	GВ	GC	н	НА	J	ĸ	L	ММ	ML	NN	ОА	ов	OL	Р		PA	РВ	PW	Q
32					59.5	37.5	16	12	10	48	12.5	9	12.5	112	М6	24	24	34	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	Rc	1/8	7 ′	15	34	30
40	ı		75, 10 175,	,	66	44	16	12	10	54	14	10	14	120	M6	27	27	40	M8 x 1.25	20	M8 x 1.25	6.6	11	7.5	Rc	1/8	13	18	38	30
50			350.		72	44	20	16	12	64	14	11	12	148	M8	32	32	46	M10 x 1.5	22	M10 x 1.5	8.6	14	9	Rc	1/4	9 2	21.5	47	40
63	200,	, 000,	000,	100	77	49	20	16	12	78	16.5	13.5	16.5	162	M10	39	39	58	M10 x 1.5	22	M10 x 1.5	8.6	14	9	Rc	1/4	14 2	28	55	50
Bore size					.,,					W									WB			.,			.,,					
Bore size (mm)	R	s	Т	U	VA	VB	25st or	less (Over 25st to 100st			Over 2 to 300	00st O	ver 300s	t 25st	or less	Over 2 to 100			Over 200st to 300st	Over 300st	х	ХА	ХВ	хс	XL	YY	,	YL	z
	R 96	S	T 110	U 78	VA 98	VB 63	25st or 24		Over 25st to 100st 48	Over to 2		Over 2 to 300		over 300s	_	or less	Over 2 to 100			Over 200st to 300st 121	Over 300st 171	X 42	XA 4	XB 4.5	xc	XL	YY M8 x 1			z
(mm) 32		-	T 110 118	78						Over to 2	100st 200st		0		3				ver 100st to 200st				4					1.25	16	Z 21 22
(mm) 32	96	44	118	78	98	63	24		48	Over to 2	100st 200st 24	200	0	300	3	3	45		ver 100st to 200st	121	171	42	4	4.5	3	6	M8 x 1	1.25	16 16	

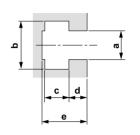
MGPM (slide bearing)/Dimensions A, DB, E

MGPM (slide bearing)/Dimensions A, DB, E (n													
Bore size		Α				Е							
(mm)	50st or less	Over 50st to 200st	Over 200st	DB	50st or less	Over 50st to 200st	Over 200st						
32	97	102	140	20	37.5	42.5	80.5						
40	97	102	140	20	31	36	74						
50	106.5	118	161	25	34.5	46	89						
63	106.5	118	161	25	29.5	41	84						

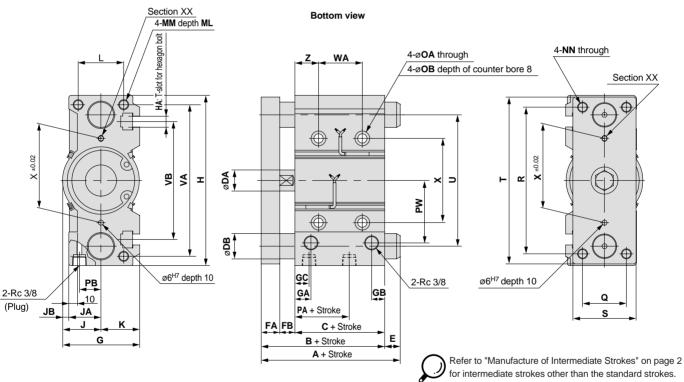
MGPL (ball bushing)/Dimensions A, DB, E


(mm)

Bore size			Α			E						
(mm)	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	DB	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st			
32	81	98	118	140	16	21.5	38.5	58.5	80.5			
40	81	98	118	140	16	15	32	52	74			
50	93	114	134	161	20	21	42	62	89			
63	93	114	134	161	20	16	37	57	84			



Compact Guide Cylinder Series MGP


$\emptyset 80$, $\emptyset 100$ /MGPM, MGPL

T-slot dimensions

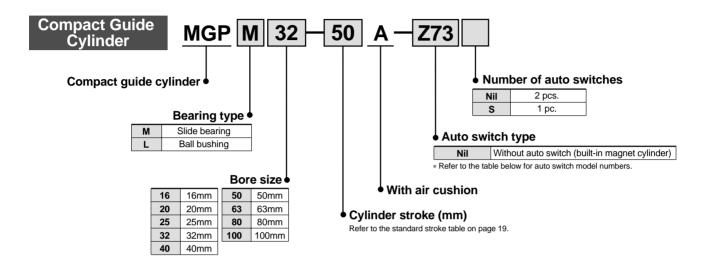
					(111111)
Bore size (mm)	а	b	С	d	е
80	13.3	20.3	12	8	22.5
100	15.3	23.3	13.5	10	30

MGPM. MGPL Common dimensions

IVIOI IVI,	WOT MI, WOT E COMMON differsions																																				
Bore size (mm)	St	anda (m	rd str nm)	oke	В	O	DA	FA	FB	G	GA	GB	GC	Н	НА	J	JA	JB	K	L	ММ	м	NN	OA	ОВ	PA	РВ	PW	Q	R							
80		5, 50, 5, 150,			96.5	56.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54	M12 x 1.	75 25	M12 x 1.7	5 10.6	17.5	14.5	25.5	74	52	174							
100), 300,			116	66	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62	M14 x 2.	0 3	M14 x 2.0	12.5	20	17.5	32.5	89	64	210							
Bore size						6 T II VA V		C T 11 1/A		е т і						WA	-							WI					.,	107		_					
(mm)	S		U	VA	VB	25st or I	ess C	over 25st to 100st	Over 10 to 200	00st O	ver 200s to 300st	Over 3	300st 2	25st or le	ss Ov	er 25st 100st	Over 1 to 20	00st C	Over 20 to 300:	0st st 0	ver 300st	X	YY	YL	2												
80	75	198	156	180	140	28		52	12	8	200	30	00	42		54	92	2 T	128	3	178	100	M12 x 1.75	24	28												
100	90	236	188	210	166	48		72	14	8	220	32	20	35		47	8	5	121		171	124	M14 x 2.0	28	11												

(mm)

MGPM (slide bearing)/Dimensions A, DB, E


Bore size		Α		DB		Е	
(mm)	50st or less	Over 50st to 200st	Over 200st	פט	50st or less	Over 50st to 200st	Over 200st
80	115	142	193	30	18.5	45.5	96.5
100	137	162	203	36	21	46	87

MGPL (ball bushing)/Dimensions A, DB, E

	Bore size			Α		DB	E							
st	(mm)	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	סט	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st				
	80	109.5	130	160	193	25	13	33.5	63.5	96.5				
	100	121	147	180	203	30	5	31	64	87				

How to Order

Applicable auto switches

					L	oad vo	Itage	Auto swit	ch model	Lead wir	e length	(m) Note 1)			
Туре	Special function	Electrical entry	Indicator light	Wiring (output)	D	С	AC			0.5 (Nil)	3 (L)	5 (Z)	Applical	ole load	Detailed specifications
				3 wire		5V	_	_	Z 76	•	•	_	IC circuit	l	
Reed switch	_	Grommet	Yes	2 wire	24V	12V	100V	_	Z73	•	•	•	_	Relay,	P. 59
			No		240	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC	
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC		
	_			3 wire (PNP) 2 wire		12V		Y7PV	Y7P	•	•	0	circuit		P. 60
						12V		Y69B	Y59B	•	•	0	_		
Solid state	Diagnostic	Grommet	Yes	3 wire (NPN)	24V	5V		Y7NWV	Y7NW	•	•	0	IC	Relay,	
switch	indication (2 colour	Orominet	165	3 wire (PNP)	240	12V		Y7PWV	Y7PW	•	•	0	circuit PLC		P. 61
	indicator)					12V	,	Y7BWV	Y7BW	•	•	0			
	Water resistant (2 colour indicator)			2 wire				_	Ү 7ВА	_	•	0	_		P. 62
	Magnetic field resistant (2 colour indicator)					_		_	P5DW Note 3)	_	•	•			P. 63

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B

3m L Y69BL Y69BZ 5m Z

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-P5DW cannot be mounted on bore sizes of ø32 or less.

Compact Guide Cylinder

Series MGP With Air Cushion

Action		Double acting						
Fluid		Air						
Proof pressure		1.5MPa						
Maximum operating pressure		1.0MPa						
Minimum operating pressure	ø16	0.15MPa						
willimum operating pressure	ø20 to ø100	0.12MPa						
Ambient and fluid temperature		-10 to 60°C (with no freezing)						
Distance	ø16 to ø63	50 to 500mm/s						
Piston speed	ø80, ø100	50 to 400mm/s						
Cushion	Air c	cushion at both ends (without bumper)						
Lubrication	Non-lube							
Stroke length tolerance	^{+1.5} ₀ mm							

Standard Strokes

Bore size (mm)	Standard stroke (mm)
16	25, 50, 75, 100
20 to 63	25, 50, 75, 100, 125, 150, 175, 200
80, 100	50, 75, 100, 125, 150, 175, 200

Manufacture of Intermediate Strokes

Modification method	Strokes provided in 1mm increments I stroke cylinder.	by changing the collar on a standard									
Part number	Indicate -XC19 at the end of the standa	ndicate -XC19 at the end of the standard part number.									
Applicable	ø 16	26 to 99									
stroke	ø 20 to ø 63	26 to 199									
(mm)	ø 80 , ø 100	51 to 199									
Example	Part no.: MGPM20-35A-XC19 A collar 15mm in width is installed in a MGPM20-50A. C dimension is 112mm.										

OUT (N)

IN (N)

Note 1) Intermediate strokes (in 1mm increments) with a special body are available by special order.

Auto switch mounting bracket part no. for D-P5DW

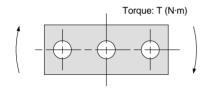
Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x 0.45 x 8ℓ) 2 pcs. Hexagon socket head cap screw (M3 x 0.5 x 16ℓ) 2 pcs. Spring washer (nominal size 3)

Theoretical Output

												(N)
Bore size	Rod size	Operating	Piston area			Op	erating	pressi	ıre (MF	a)		
(mm)	(mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
16	8	OUT	201	40	60	80	101	121	141	161	181	201
10	0	IN	151	30	45	60	76	91	106	121	136	151
20	10	OUT	314	63	94	126	157	188	220	251	283	314
20	10	IN	236	47	71	94	118	142	165	189	212	236
25	12	OUT	491	98	147	196	246	295	344	393	442	491
25	12	IN	378	76	113	151	189	227	265	302	340	378
32	16	OUT	804	161	241	322	402	482	563	643	724	804
32	10	IN	603	121	181	241	302	362	422	482	543	603
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
40	10	IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
30	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
03	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
00	20	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854
100	30	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

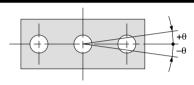
Weights


Slide bearing: MGPM16 to 100

(kg) Standard stroke (mm) Bore size Model (mm) 25 50 75 100 125 150 175 200 16 MGPM16 0.51 0.69 0.78 0.91 MGPM20 20 0.89 1.54 1.74 1.94 2.13 2.33 25 MGPM25 1.23 1.60 1.87 2.14 2.41 2.68 2.95 3.23 MGPM32 1.98 2.51 2.77 3.15 3.53 3.91 4.29 4.68 5.34 40 MGPM40 3.21 2.34 2.91 3.64 4.06 4.49 4.92 MGPM50 3.92 4.75 5.29 5.93 7.21 7.85 8.49 4.94 5.89 6.54 7.29 8.05 8.81 9.56 10.32 63 MGPM63 80 MGPM80 8.98 9.64 10.6 11.5 12.5 13.4 14.3 14.2 16.5 17.8 19.1 20.5 21.8 MGPM100 15.1 100

Ball bushing: MGPL16 to 100

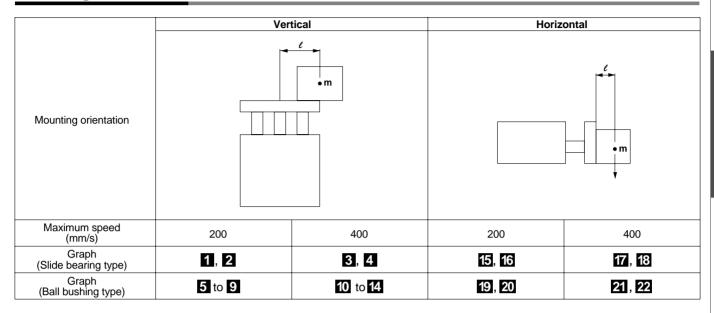
									(kg)					
Bore size	Model	Standard stroke (mm)												
(mm)	iviodei	25	50	75	100	125	150	175	200					
16	MGPL16	0.56	0.66	0.78	0.89	_	_	_	_					
20	MGPL20	0.97	1.12	1.30	1.50	1.68	1.85	2.03	2.20					
25	MGPL25	1.34	1.54	1.78	2.05	2.28	2.51	2.74	2.97					
32	MGPL32	1.81	2.34	2.57	2.94	3.26	3.58	3.89	4.21					
40	MGPL40	2.15	2.73	3.01	3.42	3.78	4.14	4.50	4.86					
50	MGPL50	3.65	4.47	4.95	5.71	6.14	6.69	7.24	7.79					
63	MGPL63	4.66	5.60	6.20	7.07	7.61	8.28	8.95	9.61					
80	MGPL80	_	8.88	9.63	10.5	11.3	12.1	12.9	13.7					
100	MGPL100	_	13.7	14.9	16.0	17.2	18.4	19.6	20.8					


Allowable Rotational Torque of Plate (Air Cushion)

T (N·m)

Bore size	Bearing				Stroke (mm)			
(mm)	type	25	50	75	100	125	150	175	200
16	MGPM	0.53	0.84	0.69	0.58	_	_	_	
10	MGPL	1.27	0.86	0.65	0.52	_	_	_	_
20	MGPM	0.99	2.23	1.88	1.63	1.44	1.28	1.16	1.06
	MGPL	2.66	1.94	1.52	1.57	1.34	1.17	1.03	0.93
25	MGPM	1.64	3.51	2.96	2.57	2.26	2.02	1.83	1.67
25	MGPL	4.08	3.02	2.38	2.41	2.05	1.78	1.58	1.41
32	MGPM	6.35	6.64	5.69	4.97	4.42	3.98	3.61	3.31
32	MGPL	5.95	5.89	5.11	6.99	6.34	5.79	5.33	4.93
40	MGPM	7.00	7.32	6.27	5.48	4.87	4.38	3.98	3.65
40	MGPL	6.55	6.49	5.62	7.70	6.98	6.38	5.87	5.43
50	MGPM	13.0	13.8	12.0	10.6	9.50	8.60	7.86	7.24
50	MGPL	9.17	11.2	9.8	12.8	11.6	10.7	9.80	9.10
63	MGPM	14.7	15.6	13.5	11.9	10.7	9.69	8.86	8.16
03	MGPL	10.2	12.5	11.0	14.3	13.0	11.9	11.0	10.2
80	MGPM	_	26.0	22.9	20.5	18.6	17.0	15.6	14.5
80	MGPL	_	25.2	22.7	20.6	18.9	17.3	16.0	14.8
100	MGPM	_	41.9	37.5	33.8	30.9	28.4	26.2	24.4
100	MGPL	_	41.7	37.9	34.6	31.8	29.3	27.2	25.3

Non-rotating Accuracy of Plate



For non-rotating accuracy $\boldsymbol{\theta}$ without load, use a value no more than the values in the table as a guide.

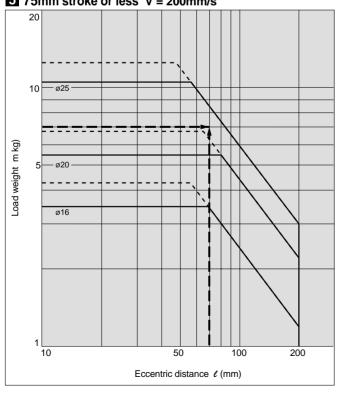
Bore size	Non-rotating	g accuracy θ				
(mm)	MGPM	MGPL				
16	±0.08°	±0.10°				
20	±0.07°	.0.00°				
25	±0.07	±0.09°				
32	±0.06°	±0.08°				
40	±0.06	±0.06				
50	±0.05°	±0.06°				
63	±0.05	±0.06				
80	0.040	0.05%				
100	±0.04°	±0.05°				

Series MGP (With Air Cushion) **Model Selection**

Selecting Conditions

Selection Example 1 (Vertical Mounting)

Selecting conditions **Mounting: Vertical**


Bearing type: Ball bushing

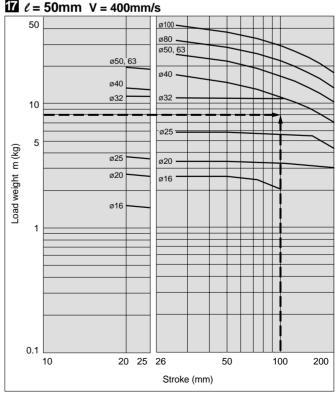
Stroke: 75mm

Maximum speed: 200mm/s Load weight: 7kg Eccentric distance:70mm

Find the point of intersection for the load weight of 7kg and the eccentric distance of 70mm on graph 5, based on vertical mounting, ball bushing, 75mm stroke, and the speed of 200mm/s. →MGPL25-75A is selected.

Selection Example 2 (Horizontal Mounting)

Selecting conditions Mounting: Horizontal Bearing type: Slide bearing

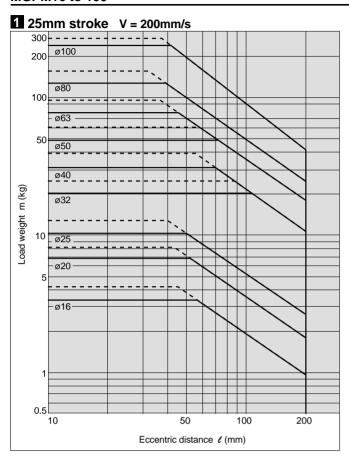

Distance between plate and load center of gravity: 40mm

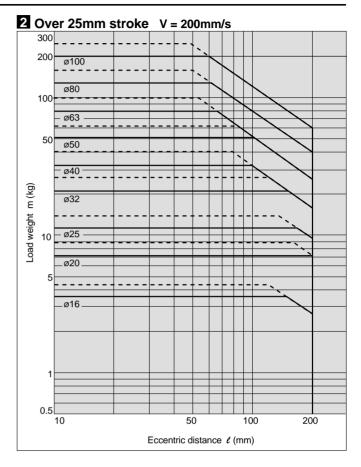
Maximum speed: 300mm/s

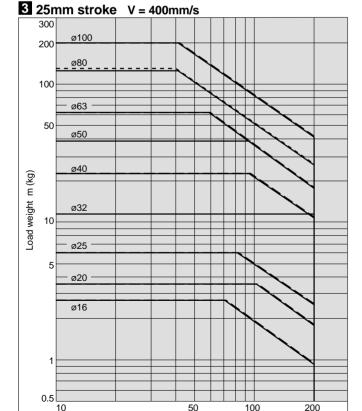
Load weight: 8kg Stroke: 100mm

Find the point of intersection for the load weight of 8kg and stroke of 100mm on graph 17, based on horizontal mounting, slide bearing, the distance of 40mm between the plate and load center of gravity, and the speed of 300mm/s.

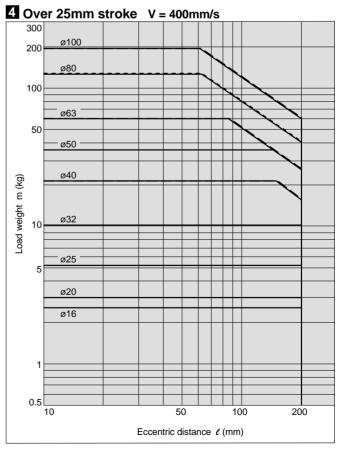
→MGPM32-100A is selected.






Vertical Mounting Slide Bearing

Operating pressure: 0.4MPa - - - - Operating pressure: 0.5MPa or more

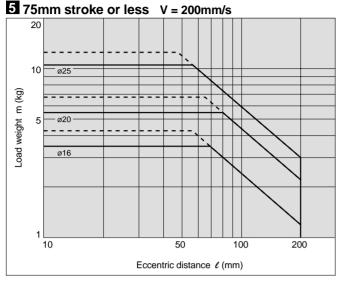

MGPM16 to 100

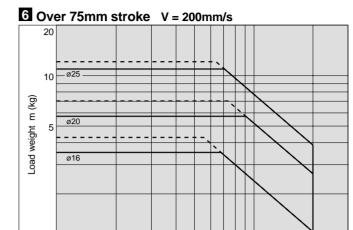
Eccentric distance ℓ (mm)

200

ALMOTION

Compact Guide Cylinder With Air Cushion

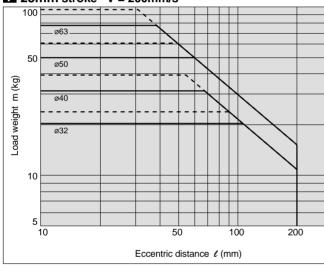

Series MGP


Operating pressure: 0.4MPa

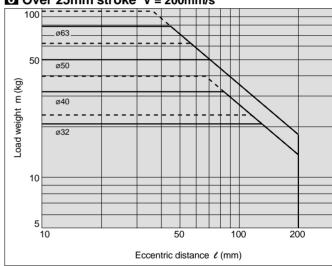
---- Operating pressure: 0.5MPa or more

Vertical Mounting Ball Bushing

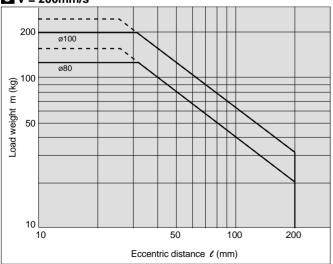
MGPL16 to 25



Eccentric distance ℓ (mm)


MGPL32 to 63

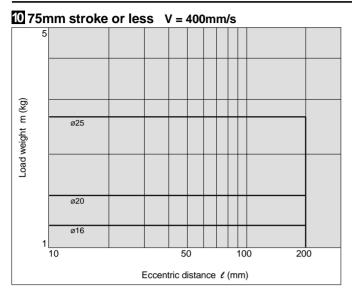
7 25mm stroke V = 200mm/s

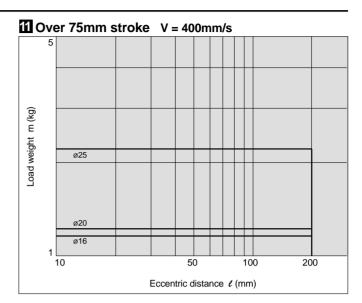

8 Over 25mm stroke V = 200mm/s

10

MGPL80, 100

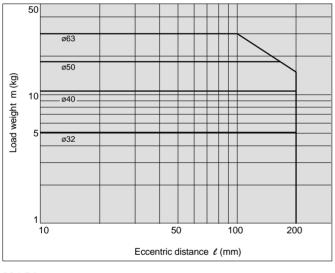
9 V = 200 mm/s

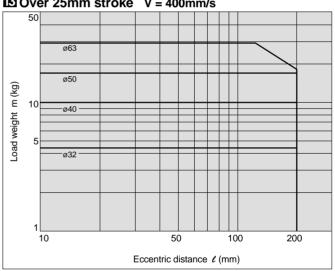




Vertical Mounting Ball Bushing

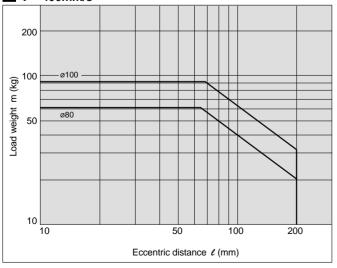
Operating pressure: 0.4MPa


MGPL16 to 25

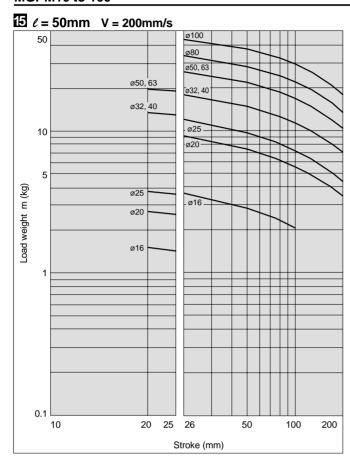


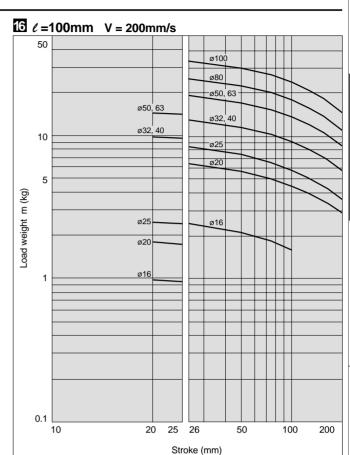
MGPL32 to 63

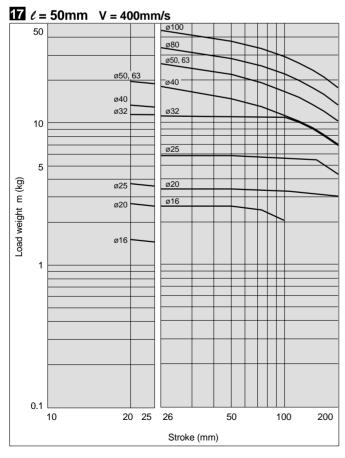
12 25mm stroke V = 400mm/s

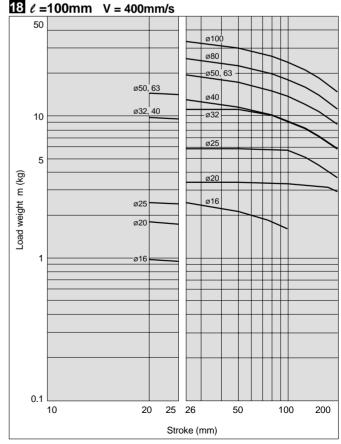


Over 25mm stroke V = 400mm/s

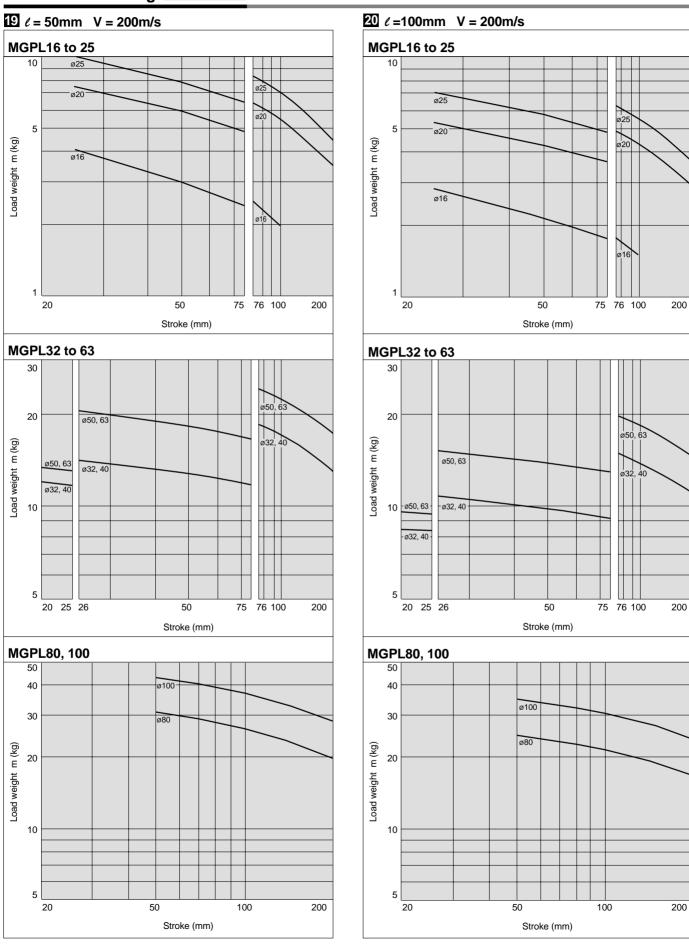

MGPL80, 100

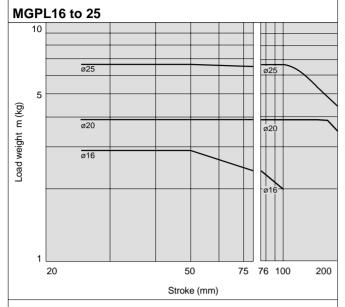

14 V = 400 mm/s



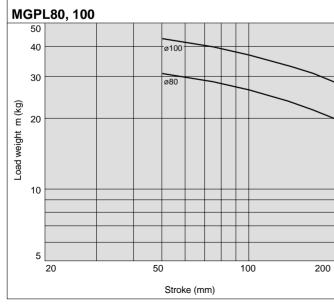

Horizontal Mounting Slide Bearing

MGPM16 to 100



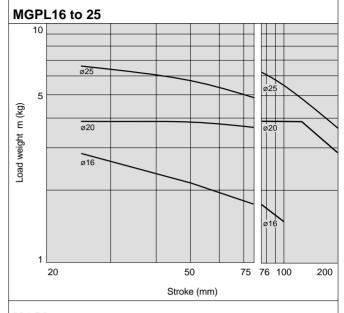


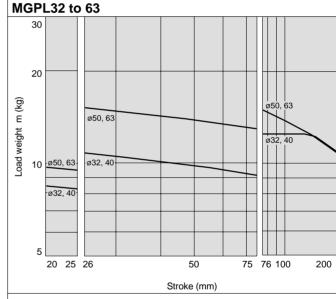
Horizontal Mounting Ball Bushing

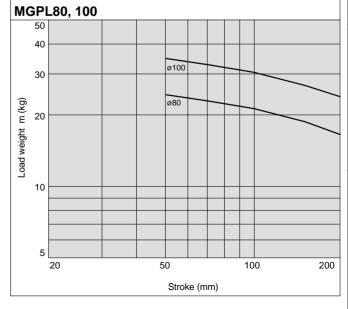


Horizontal Mounting Ball Bushing

21 $\ell = 50$ mm V = 400m/s

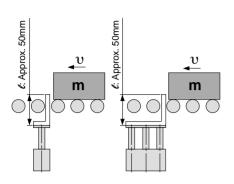






22 $\ell = 100 \text{mm} \text{ V} = 400 \text{m/s}$

ALMOTION

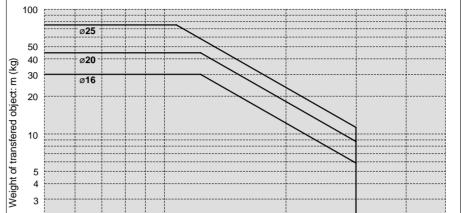


MGPM16 to 25 (Slide bearing)

Series MGP

Operating Range when Used as Stopper

Bore Sizes Ø16 to 25/MGPM16 to 25 (Slide bearing)


* When selecting a model with a longer ℓ dimension, be sure to choose a bore size which is sufficiently large.

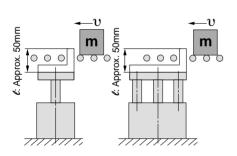
⚠ Caution

Handling precautions

Note 1) When using as a stopper, select a model with a stroke of 25mm or less.

Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

Transfer speed: υ (m/min)

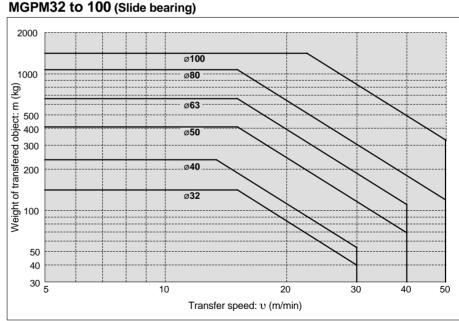

30

40

50

10

Bore Sizes ø32 to 100/MGPM32 to 100 (Slide bearing)


* When selecting a model with a longer ℓ dimension, be sure to choose a bore size which is sufficiently large.

⚠ Caution

Handling precautions

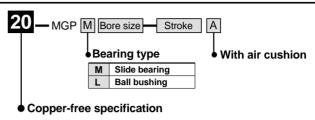
Note 1) When using as a stopper, select a model with a stroke of 50mm or less.

Note 2) Model MGPL (ball bushing) cannot be used as a stopper.

Compact Guide Cylinder With Air Cushion

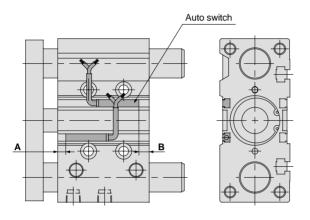
Series MGP

Copper-free Series (Applicable to CRT Manufacturing Process)


To prevent the influence of copper ions or halogen ions during CRT manufacturing processes, copper and fluorine materials are not used as component parts.

Specifications

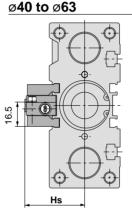
Applicable series	MGPM	MGPL				
Bearing type	Slide bearing	Ball bushing				
Bore size (mm)	16, 20, 29 50, 63,	5, 32, 40, 80, 100				


^{*} Specifications and dimensions other than above are identical to the standard basic type

How to Order

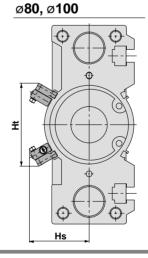
Auto Switches/Proper Mounting Position for Stroke End Detection

For D-P5DW (* Cannot be mounted on bore sizes ø32 or less.)


Proper mounting position (mm)

Bore size (mm)	Α	В
16	17.5	15.5
20	26	11
25	23	14.5
32	16	21.5

Bore size (mm)	Α	В
, ,		
40	26	18
50	27.5	16.5
63	28	21
80	25	31.5
100	28.5	37.5


(mm)

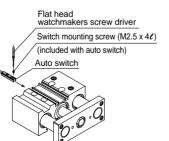
Note 1) Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

For bore sizes ø40 through 63 with two switches, one switch is mounted on each

		(111111)
Bore size (mm)	Hs	Ht
40	44.5	_
50	50	_
63	57	_
80	60.7	84.4
100	70.8	96.1

* Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one

Auto Switch Mounting


⚠ Caution

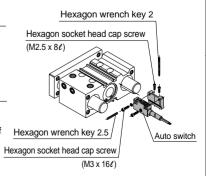
Auto switch mounting tool

• When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter.

Tightening torque

• Tighten with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be

For D-P5DW

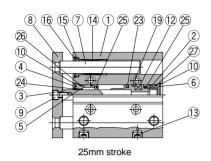

Auto switch mounting tool

When tightening hexagon

socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws

Tightening torque

• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

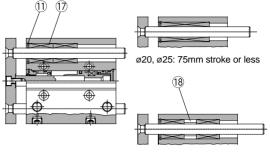


Construction (With Air Cushion)

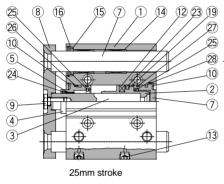
Series MGPM

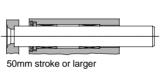
MGPM16 to 25

ø16: 25mm stroke


ø16: 50mm stroke or larger

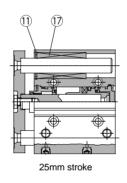
ø20, ø25: 50mm stroke or larger

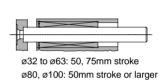

Series MGPL

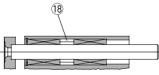


ø20, ø25: 100mm stroke or larger

MGPM32 to 100







Cushion valve section

MGPL32 to 100

ø32 to ø63: 100mm stroke or larger

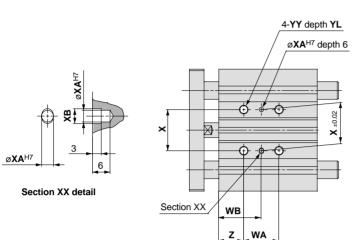
Parts list

No.	Description	Material		Note
1	Body	Aluminum alloy	Hard	l anodized
2	Piston	Aluminum alloy	Ch	romated
3	Piston rod	Stainless steel	ø16 to ø25	
3	FISION TOU	Carbon steel	ø32 to ø100	Hard chrome plated
4	Collar	Al.,	ø16 to ø63	Clear anodized
-	Collai	Aluminum alloy	ø80, ø100	Coated
5	Bushing	Lead bronze casting		
6	Head cover	Aluminum allav	ø16 to ø25	Clear anodized
0	nead cover	Aluminum alloy	ø32 to ø100	Coated
7	Guide rod	Carbon steel	Hard cl	nrome plated
8	Plate	Carbon steel	Nicl	kel plated
9	Plate mounting bolt	Carbon steel	Nicl	kel plated
10	Snap ring	Carbon tool steel	Phosp	hate coated
11	Snap ring	Carbon tool steel	Phosp	hate coated
12	Magnet	Synthetic rubber		
13	Plug (M-5P)	Brass	ø16	Nickel plated
13	Hexagon socket head taper plug	Carbon steel	ø20 to ø100	Nickel plated
14	Slide bearing	Lead bronze casting		_
15	Felt	Felt		
16	Holder	Resin		
17	Ball bushing			

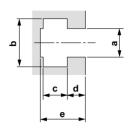
Parts list

No.	Description	Material	Note
18	Spacer	Aluminum alloy	
19	Wear ring	Resin	
20	Cushion valve	Steel	
21	Gasket	NBR	
22	Snap ring	Carbon tool steel	Except ø16
23*	Piston seal	NBR	
24*	Rod seal	NBR	
25*	Cushion seal	Urethane	
26*	Gasket A	NBR	
27*	Gasket B	NBR	·
28*	Gasket C	NBR	

Replacement parts: Seal kits

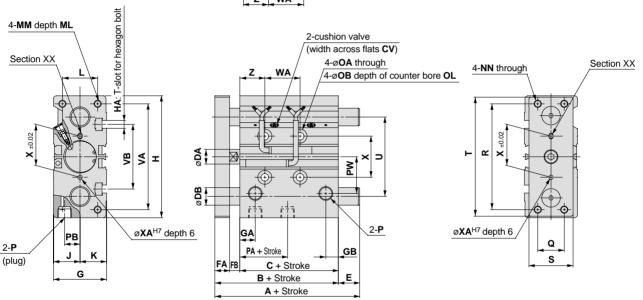

Bore size (mm)	Kit no.	Contents	Bore size (mm)	Kit no.	Contents
16	MGP16-A-PS	Kits include	50	MGP50-A-PS	Kits include
20	MGP20-A-PS	items 23, 24, 25	63	MGP63-A-PS	items 23, 24, 25
25	MGP25-A-PS	26, 27, 28	80	MGP80-A-PS	26, 27, 28 from the
32	MGP32-A-PS	from the table	100	MGP100-A-PS	table above.
40	MGP40-A-PS	above.			

^{*} Seal kits are sets consisting of items 23 through 28 above, and can be ordered using the kit number for each bore size.



Compact Guide Cylinder With Air Cushion

Ø16 to Ø25/MGPM, MGPL (With Air Cushion)



T-slot dimensions

Series MGP

					(111111)
Bore size (mm)	а	b	С	d	е
16	4.4	7.4	3.7	2.5	6.7
20	5.4	8.4	4.5	2.8	7.8
25	5.4	8.4	4.5	3	8.2

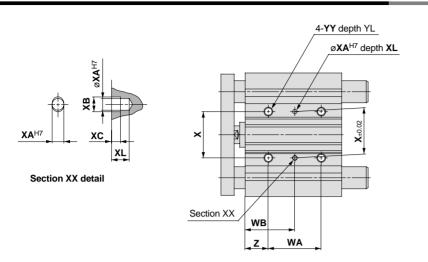
Note 1) Refer to "Manufacture of Intermediate Strokes" on page 19 for intermediate strokes.

Note 2) When adjusting the ø16 cushion valve, use a 3mm flat head watchmakers screw driver.

MGPM. MGPL Common dimensions

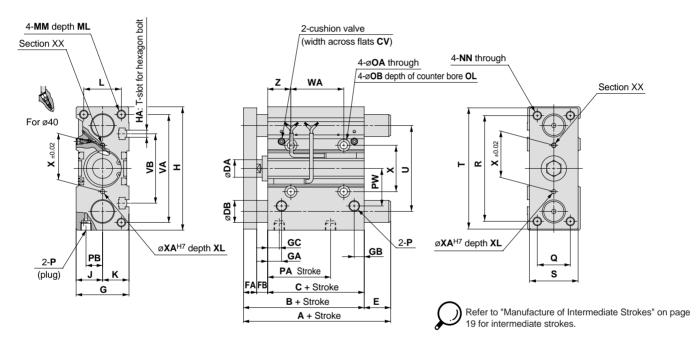
ivioi ivi,	WO L COM	1011	uiii	11011	1310	113																			((111111)
Bore size (mm)	Standard stroke (mm)	В	С	cv	DA	FA	FB	G	GA	GB	н	на	J	к	L	мм	ML	NN	ОА	ов	OL	Р	PA	РВ	PW	Q
16	25, 50, 75, 100	71	58	_	8	8	5	30	11	8	64	M4	15	15	22	M5 x 0.8	12	M5 x 0.8	4.3	8	4.5	M5 x 0.8	40	10	19	16
20	25, 50, 75, 100,	78	62	1.5	10	10	6	36	10.5	8.5	83	M5	18	18	24	M5 x 0.8	13	M5 x 0.8	5.6	9.5	5.5	Rc 1/8	37.5	10.5	25	18
25	125, 150, 175, 200	78.5	62.5	1.5	12	10	6	42	11.5	9	93	M5	21	21	30	M6 x 1.0	15	M6 x 1.0	5.6	9.5	5.5	Rc 1/8	37.5	13.5	28.5	26

Bore size	Standard stroke	_		_		.,,	\/D		WA		WB				V.4	VD	VV		_
(mm)	(mm)	ĸ	5	ı	U	VA	AR	75st or less	st or less 100 to 175st 200st 7		75st or less	100 to 175st	200st	X	XA	XB	YY	YL	2
16	25, 50, 75, 100	54	25	62	46	56	38	44	110	-	27	60	_	24	3	3.5	M5 x 0.8	10	5
20	25, 50, 75, 100,	70	30	81	54	72	44	44	120	200	39	77	117	28	3	3.5	M6 x 1.0	12	17
25	125, 150, 175, 200	78	38	91	64	82	50	44	120	200	39	77	117	34	4	45	M6 x 1 0	12	17


MGPM (slide bearing)/Dimensions A, DB, E (mm)

Bore size		Α		DB	E			
(mm)	25st	50st	75st or more		25st	50st	75st or more	
16	71	89.5	71	10	0	18.5	0	
20	78	86.5	84.5	12	0	8.5	6.5	
25	78.5	87	85	16	0	8.5	6.5	

INIGEL (
Bore size			A		DB	E			
(mm)	25st	50, 75st	100st	125st or more		25st	50, 75st	100st	125st or more
16	80	71	71	_	8	9	0	0	
20	95	80	99	104	10	17	2	21	26
25	100.5	85.5	99.5	104.5	13	22	7	26	26



Ø32 to Ø63/MGPM, MGPL (With Air Cushion)

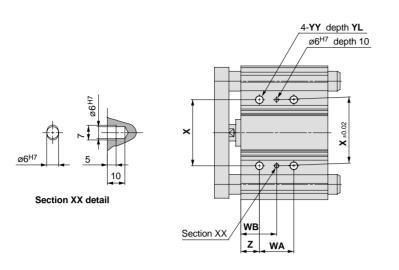
T-slot dimensions

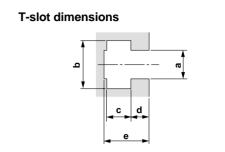
					(mm)
Bore size (mm)	а	b	С	d	е
32	6.5	10.5	5.5	3.5	9.5
40	6.5	10.5	5.5	4	11
50	8.5	13.5	7.5	4.5	13.5
63	11	17.8	10	7	18.5

MGPM, MGPL Common dimensions

(mm) Standard stroke Bore size GB GC ML ОВ РΒ G GA НΑ мм NN OA OL Р PΑ PW Q С CV DA FΑ FB Н κ L (mm) 84.5 62.5 1.5 48 12.5 9 12.5 112 M6 34 M8 x 1.25 20 M8 x 1.25 6.6 32 16 12 10 24 24 11 7.5 Rc 1/8 32 15 34 30 25, 50, 75, 40 91 69 1.5 16 12 10 54 14 10 14 120 M6 27 27 40 M8 x 1.25 20 M8 x 1.25 6.6 11 7.5 Rc 1/8 38 18 100, 125, 148 M8 46 M10 x 1.5 22 M10 x 1.5 8.6 Rc 1/4 50 97 69 2.5 20 16 12 64 14 11 12 32 32 14 9 34 21.5 47 40 150, 175, 200 2.5 | 20 | 16 | 12 | 78 | 16.5 | 13.5 | 16.5 | 162 | M10 | 39 | 39 | 58 | M10 x 1.5 | 22 | M10 x 1.5 | 8.6 | 14 | 9 Rc 1/4 39 28 63 102 74 55 | 50 WA WR Bore size Standard stroke R s Т U VA ۷B X XΑ ΧВ хс XL YY ΥL Z (mm) (mm) 25, 50, 75st 100 to 175st 200st 25, 50, 75st 100 to 175st 200st 32 96 44 110 78 98 63 48 124 200 45 83 121 42 4 4.5 3 6 M8 x 1.25 16 21 25, 50, 75, 44 4.5 6 M8 x 1.25 16 40 104 118 86 106 72 48 124 200 46 84 122 50 3 22 100, 125, 50 130 | 60 | 146 | 110 | 130 | 92 124 200 48 86 124 66 5 6 4 8 M10 x 1.5 20 24 150, 175, 200 80 5 8 130 70 | 158 | 124 | 142 | 110 128 200 50 88 124 6 4 M10 x 1.5 20 24 63

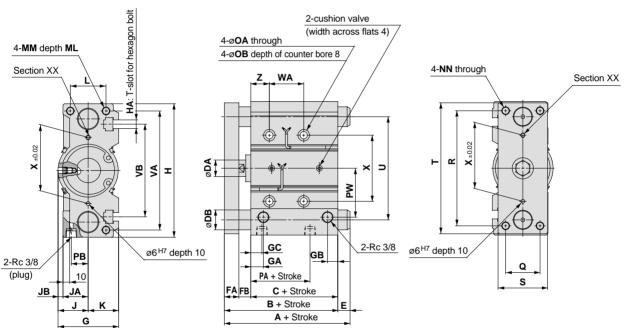
MGPM (slide bearing)/Dimensions A, DB, E (mm)


	•					. ,		
Bore size		Α		DB	E			
(mm)	25st	50st	75st or more	םט	25st	50st	75st or more	
32	97	127	102	20	12.5	42.5	17.5	
40	97	127	102	20	6	36	11	
50	106.5	131.5	118	25	9.5	34.5	21	
63	106.5	131.5	118	25	4.5	29.5	16	


MGPL (ball bushing)/Dimensions A, DB, E

	(- <i>37</i> . –			-, -	-,-				()
	Bore size		Α					E				
	(mm)	25st	50st	75st	100st	125st or more	DB	25st	50st	75st	100st	125st or more
	32	84.5	123	98	115.5	118	16	0	38.5	13.5	31	33.5
	40	91	123	98	115.5	118	16	0	32	7	24.5	27
	50	97	127.5	114	159	134	20	0	30.5	17	62	37
	63	102	127.5	114	159	134	20	0	25.5	12	57	32

Compact Guide Cylinder With Air Cushion


$\emptyset 80$, $\emptyset 100$ /MGPM, MGPL (With Air Cushion)

Series MGP

					(mm)
Bore size (mm)	а	b	С	d	е
80	13.3	20.3	12	8	22.5
100	15.3	23.3	13.5	10	30

Refer to "Manufacture of Intermediate Strokes" on page 19 for intermediate strokes.

85

M14 x 2.0

124

MGPM. MGPL Common dimensions

MGPM,	MGPL Comm	on o	dime	ensi	ons	,																			(mm)
Bore size (mm)	Standard stroke (mm)	В	С	DA	FA	FB	G	GA	GB	GC	н	НА	J	JA	JB	ĸ	г	ММ	ML	NN	1 0	DA	ов	РА	РВ	PW
80	50, 75, 100, 125,	121.5	81.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54	M12 x 1.7	5 25	M12 x 1	.75 1	0.6	17.5	39.5	25.5	74
100	150, 175, 200	141	91	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62	M14 x 2.0	31	M14 x	2.0 1:	2.5	20	42.5	32.5	89
Bore size (mm)	Standard stroke (mm)	Q	R	s	Т	U	VA	VB	50. 7	′5st	100 to 1		200:	st	50. 7	5st	WB	175st 2	200st	х	Y	Y	YL	z		
80	50, 75, 100, 125,	52	174	75	198	156	180	140	5:	2	12	28	200)	54		9		128	100	M12 x	1.75	24	28	_	

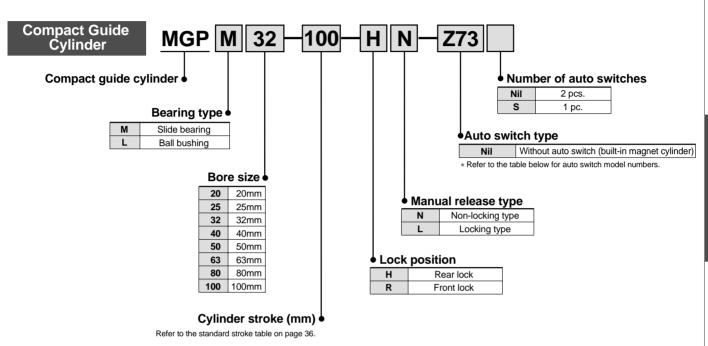
MGPM (slide bearing)/Dimensions A, DB, E (mm)

64 210 90 236 188 210 166

150, 175, 200

Bore size		4	DB	Е				
(mm)	(mm) 50st 75		סט	50st	75st or more			
80	167	142	30	45.5	20.5			
100	187	162	36	46	21			

MGPL	. (ball bushing)/Dimensions A, DB, E (n	nm)
WIGEL	. (Dali Dusilliy/Dillielisiolis A, DB, E (II	IIIII


Bore size	, ,	4	DB	E				
(mm)	50st	75st or more	סט	50st	75st or more			
80	168.5	160	25	47	38.5			
100	178.5	180	30	37.5	39			

Compact Guide Cylinder: With End Lock Series MGP

ø20, ø25, ø32, ø40, ø50, ø63, ø80, ø100

How to Order

Applicable auto switches

					L	oad vo	Itage	Auto swit	ch model	Lead wii	re length	(m) Note 1)			
Type	Special function	Electrical	Indicator	Wiring			AC	Electrical er	ntry direction	0.5 (Nil)	3	5	Applica	ble load	Detailed specifications
		entry	light	(output)	DC		AC	Perpendicular	dicular In-line		(L)	(Z)			Specifications
				3 wire	_	5V	_	-	Z 76	•	•	_	IC circuit	_	
Reed switch	_	Grommet	Yes	2 wire	24V	12V	100V	_	Z73	•	• • •		_	Relay,	P. 59
			No	2 WIIE	240	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC	
	_			3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC		
				3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit		P. 60
			Yes	2 wire		12V		Y69B	Y59B	•	•	0	_		
Solid state	Diagnostic	Grommet		3 wire (NPN)		5V		Y7NWV	Y7NW	•	•	0	IC	Relay,	
switch	indication (2 colour	Orominet	165	3 wire (PNP)	240	12V	_	Y7PWV	Y7PW	•	•	0	circuit	PLC	P. 61
	indicator)					12V		Y7BWV	Y7BW	•	•	0			
-	Water resistant (2 colour indicator)			2 wire				_	Y7BA	_	•	0	_		P. 62
	Magnetic field resistant (2 colour indicator)					_		_	P5DW Note 3)	_	•	•			P. 63

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B 3m L Y69BL 5m Z Y69BZ

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type D-P5DW cannot be mounted on bore sizes of $\emptyset 32$ or less.

Series MGP

Specifications

ALMOTION

Action	Double	e acting			
Fluid	ļ ,	Air			
Proof pressure	1.5	MPa			
Maximum operating pressure	1.0	MPa			
Minimum operating pressure	0.15	MPa *			
Ambient and fluid temperature	-10 to 60°C (with no freezing)				
Dieter anad	ø20 to ø63	50 to 500mm/s			
Piston speed	ø80, ø100	50 to 400mm/s			
Cushion	Rubber bump	er at both ends			
Lubrication	Non-lube				
Stroke length tolerance	+1.5 0	mm			

^{* 0.1}MPa except for the lock unit.

Lock Specifications

Lock position		Rear, Front side									
Holding force	ø20	ø25	ø32	ø40	ø50	ø63	ø80	ø100			
(max.) N	215	215 330 550 860 1340 2140 3450									
Backlash		2mm or less									
Manual release			Non-	locking typ	e, Lockin	g type					

Adjust switch positions for operation at both the stroke end and backlash (2mm) movement positions.

Standard Strokes

Bore size (mm)	Standard stroke (mm)
20, 25, 32, 40, 50, 63, 80, 100	25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, 400

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a standard stroke cylinder. Available in 5mm stroke increments
Part number	Refer to page 35 for standard part numbers and ordering procedure.
Applicable stroke (mm)	5 to 395
Example	Part no.: MGPM50–35–HN A spacer 15mm in width is installed in a MGPM50–50–HN. C dimension is 119mm.

Note 1) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch.

OUT

Auto switch mounting bracket part no. for D-P5DW

Bore size (mm)	Mounting bracket part no.	Notes
40, 50, 63, 80, 100	BMG1-040	Switch mounting bracket Hexagon socket head cap screw (M2.5 x 0.45 x 8.4) 2 pcs. Hexagon socket head cap screw (M3 x 0.5 x 16.4) 2 pcs. Spring washer (nominal size 3)

Theoretical Output

									→ [•		(N)
Bore size	Rod	Operating	Piston area			Ор	erating	pressu	ıre (MI	Pa)		
(mm)	size (mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
20	10	OUT	314	63	94	126	157	188	220	251	283	314
20	10	IN	236	47	71	94	118	142	165	189	212	236
25	12	OUT	491	98	147	196	246	295	344	393	442	491
25	12	IN	378	76	113	151	189	227	265	302	340	378
32	16	OUT	804	161	241	322	402	482	563	643	724	804
32	10	IN	603	121	181	241	302	362	422	482	543	603
40	16	OUT	1257	251	377	503	629	754	880	1006	1131	1257
40	10	IN	1056	211	317	422	528	634	739	845	950	1056
50	20	OUT	1963	393	589	785	982	1178	1374	1570	1767	1963
30	20	IN	1649	330	495	660	825	990	1154	1319	1484	1649
63	20	OUT	3117	623	935	1247	1559	1870	2182	2494	2805	3117
03	20	IN	2803	561	841	1121	1402	1682	1962	2242	2523	2803
80	25	OUT	5027	1005	1508	2011	2514	3016	3519	4022	4524	5027
00	23	IN	4536	907	1361	1814	2268	2722	3175	3629	4082	4536
100	30	OUT	7854	1571	2356	3142	3927	4712	5498	6283	7069	7854
100	30	IN	7147	1429	2144	2859	3574	4288	5003	5718	6432	7147

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Note 2) Intermediate strokes (in 1mm increments) with a special body are available by special order.

With End Lock

Weights

Slide bearing: MGPM20 to 100 (Basic weight)

(kg)

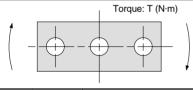
Bore size (mm) Model	Model						Standard s	troke (mm)				
	iviodei	25	50	75	100	125	150	175	200	250	300	350	400
20	MGPM20	0.86	1.12	1.32	1.52	1.71	1.91	2.11	2.31	2.78	3.18	3.57	3.97
25	MGPM25	1.18	1.56	1.83	2.10	2.38	2.65	2.92	3.19	3.85	4.39	4.94	5.48
32	MGPM32	1.92	2.32	2.70	3.09	3.47	3.85	4.23	4.61	5.56	6.32	7.09	7.85
40	MGPM40	2.20	2.66	3.08	3.51	3.93	4.36	4.78	5.20	6.24	7.10	7.95	8.80
50	MGPM50	3.73	4.46	5.10	5.74	6.38	7.02	7.66	8.30	9.91	11.2	12.5	13.8
63	MGPM63	4.61	5.45	6.21	6.96	7.72	8.47	9.23	9.99	11.8	13.3	14.8	16.3
80	MGPM80	7.88	8.70	9.49	10.3	11.2	12.0	12.8	13.9	15.5	17.2	18.8	20.5
100	MGPM100	12.1	13.2	14.4	15.6	16.8	18.0	19.1	20.6	22.9	25.3	27.6	30.0

Ball bushing: MGPL20 to 100 (Basic weight)

(kg)

Bore size					;	Standard st	troke (mm)						
(mm)	Model	25	50	75	100	125	150	175	200	250	300	350	400
20	MGPL20	0.93	1.10	1.27	1.48	1.65	1.83	2.00	2.17	2.55	2.90	3.25	3.60
25	MGPL25	1.27	1.50	1.74	2.01	2.24	2.47	2.70	2.94	3.44	3.91	4.37	4.83
32	MGPL32	1.74	2.19	2.51	2.88	3.20	3.51	3.83	4.15	4.84	5.47	6.10	6.73
40	MGPL40	2.02	2.51	2.87	3.29	3.65	4.01	4.37	4.73	5.51	6.23	6.95	7.67
50	MGPL50	3.46	4.21	4.76	5.40	5.95	6.50	7.05	7.60	8.83	9.92	11.1	12.2
63	MGPL63	4.33	5.20	5.86	6.62	7.28	7.95	8.61	9.27	10.7	12.1	13.4	14.7
80	MGPL80	8.05	8.87	9.66	10.5	11.4	12.2	13.0	14.1	15.7	17.4	19.0	20.7
100	MGPL100	12.4	13.5	14.7	15.9	17.1	18.3	19.4	20.9	23.2	25.6	27.9	30.3

Lock unit additional weight

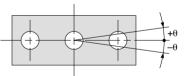

	With re	ear lock	With fro	ont lock
Bore size (mm)	HN	HL	RN	RL
20	0.05	0.07	0.05	0.06
25	0.06	0.07	0.05	0.07
32	0.09	0.10	0.09	0.10
40	0.15	0.18	0.14	0.18
50	0.24	0.27	0.23	0.27

				(kg)
	With re	ar lock	With fr	ont lock
Bore size (mm)	HN	HL	RN	RL
63	0.36	0.40	0.35	0.39
80	0.90	0.97	1.03	1.10
100	1.52	1.60	1.60	1.68

Calculation (example) MGPM50-100-HN

- Basic weight + Lock unit additional weight
- \bullet 5.74 + 0.24 = 5.99kg

Allowable Rotational Torque of Plate



т	/NI	l.m

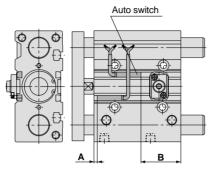
Bore size	Bearing						Stroke	(mm)					
(mm)	type	25	50	75	100	125	150	175	200	250	300	350	400
20	MGPM	0.99	0.75	1.88	1.63	1.44	1.28	1.16	1.06	0.90	0.78	0.69	0.62
20	MGPL	2.66	1.94	1.52	1.25	1.34	1.17	1.03	0.93	0.76	0.65	0.56	0.49
25	MGPM	1.64	1.25	2.96	2.57	2.26	2.02	1.83	1.67	1.42	1.24	1.09	0.98
25	MGPL	4.08	3.02	2.38	1.97	2.05	1.78	1.58	1.41	1.16	0.98	0.85	0.74
32	MGPM	6.35	5.13	5.69	4.97	4.42	3.98	3.61	3.31	2.84	2.48	2.20	1.98
32	MGPL	5.95	4.89	5.11	4.51	6.34	5.79	5.33	4.93	4.29	3.78	3.38	3.04
40	MGPM	7.00	5.66	6.27	5.48	4.87	4.38	5.98	3.65	3.13	2.74	2.43	2.19
40	MGPL	6.55	5.39	5.62	4.96	6.98	6.38	5.87	5.43	4.72	4.16	3.71	3.35
E0	MGPM	13.0	10.8	12.0	10.6	9.50	8.60	7.86	7.24	6.24	5.49	4.90	4.43
50	MGPL	9.17	7.62	9.83	8.74	11.6	10.7	9.83	9.12	7.95	7.02	6.26	5.63
60	MGPM	14.7	12.1	13.5	11.9	10.7	9.69	8.86	8.16	7.04	6.19	5.52	4.99
63	MGPL	10.2	8.48	11.0	9.74	13.0	11.9	11.0	10.2	8.84	7.80	6.94	6.24
00	MGPM	21.9	18.6	22.9	20.5	18.6	17.0	15.6	14.5	12.6	11.2	10.0	9.11
80	MGPL	15.1	23.3	22.7	20.6	18.9	17.3	16.0	14.8	12.9	11.3	10.0	8.94
400	MGPM	38.8	33.5	37.5	33.8	30.9	28.4	26.2	24.4	21.4	19.1	17.2	15.7
100	MGPL	27.1	30.6	37.9	34.6	31.8	29.3	27.2	25.3	22.1	19.5	17.3	15.5

Model selection is the same as MGP/Standard. Refer to page 4.

Non-rotating Accuracy of Plate

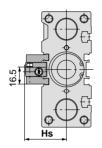
For non-rotating accuracy θ without load, use a value no more than the values in the table as a

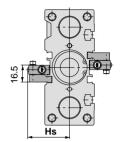
Bore size	Non-rotating accuracy θ					
(mm)	MGPM	MGPL				
20 25	±0.07°	±0.09°				
32 40	±0.06°	±0.08°				
50 63	±0.05°	±0.06°				
80 100	±0.04°	±0.05°				


Series MGP

Auto Switches/Proper Mounting Position for Stroke End Detection

With front lock


Auto switch


With rear lock

For D-P5DW (* Cannot be mounted on bore sizes ø32 or less.)

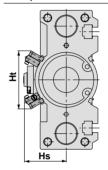
ø40 to ø63

For 25mm stroke

* For bore sizes ø40 through 63 with two switches, one switch is mounted on each side.

Proper mounting position (mm)

	•	, ,
Bore size (mm)	Α	В
20	47.5	1.5
25	35.5	1.5
32	32.5	5
40	38.5	5.5
50	38.5	4.5
63	42	7
80	63	18.5
100	67.5	23.5


* Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

(mm)

		\ /
Bore size (mm)	Α	В
20	4	33
25	5	32.5
32	5.5	32
40	9.5	34.5
50	7.5	36.5
63	10	39
80	13	68.5
100	17.5	73.5

* Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

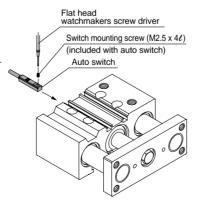
Ø80, Ø100

(mm)

Bore size (mm)	Hs	Ht
40	44.5	_
50	50	_
63	57	_
80	60.7	84.4
100	70.8	96.1

^{*} Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

Auto Switch Mounting

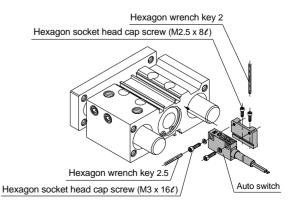

Auto switch mounting tool

When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter

Tightening torque

Tighten with a torque of 0.05 to 0.1N m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

When mounting an auto switch on the side with the end lock, insert the auto switch from the rod side for the rear lock, and from the head side for the front lock.

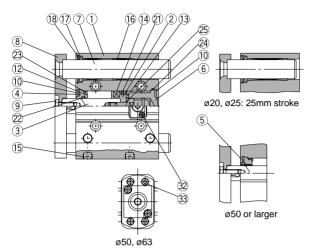

For D-P5DW

Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

Tightening torque

• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7 N·m.

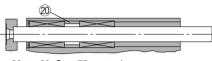


Compact Guide Cylinder With End Lock

Series MGP

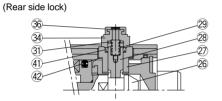
Construction

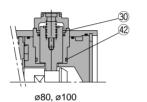
Series MGPM

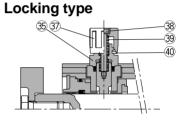


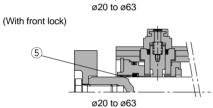
11) (19) Φ ø32 to ø63:

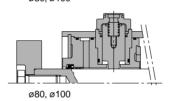
25mm stroke


Series MGPL


ø20, ø25: 75mm stroke or less ø32 to ø63: Over 25 to 75mm stroke ø80, ø100: 150mm stroke or less




ø20 to ø63: Over 75mm stroke ø80, ø100: Over 150mm stroke


Non-locking type

Parts list

(5)

ran	is iist					
No.	Description	Mat	erial	Note		
1	Body	Aluminum alloy		Hard anodized		
2	Piston	Aluminu	ım alloy	Chromated		
3	Piston rod	Stainless steel	ø20, ø25	Hard chrome plated with front end lock only		
3	PISIOTI TOU	Carbon steel	ø32 to ø100	Hard chrome plated		
4	Collar	Aluminu	ım alloy	Clear anodized		
5	Bushing	Lead bron	ze casting			
6	Head cover	Aluminu	ım alloy	Colorless chromated		
7	Guide rod	Carbo	n steel	Hard chrome plated		
8	Plate	Carbon steel		Carbon steel		Nickel plated
9	Plate mounting bolt	Carbon steel		Nickel plated		
10	Snap ring	Carbon t	ool steel	Phosphate coated		
11	Snap ring	Carbon t	ool steel	Phosphate coated		
12	Bumper A	Uretl	nane			
13	Bumper B	Uretl	nane			
14	Magnet	Synthetic	c rubber			
15	Hexagon socket head taper plug	Carbo	n steel	Nickel plated		
16	Slide bearing	Lead bronze casting				
17	Felt	Felt				
18	Holder	Resin				
19	Ball bushing					
20	Spacer	Aluminu	ım alloy			
21*	Piston seal	NE	BR			

Replacement parts: Seal kits

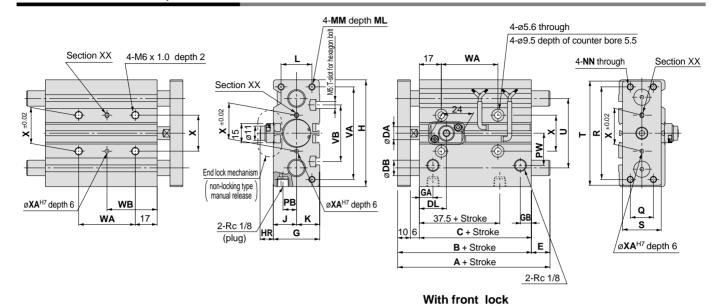
Bore size (mm)	Kit No.	Contents
20	MGP20-B-PS	
25	MGP25-B-PS	Kits include items
32	MGP32-B-PS	21, 22, 23, 24, 32, 33, 41 and 42
40	MGP40-B-PS	from the table above.
50	MGP50-B-PS	

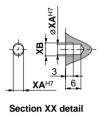
^{*} Seal kits are sets consisting of items 21 through 24, 32, 33, 41 and 42 above, and can be ordered using the kit number for each bore size.

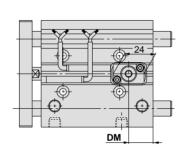
Darte liet

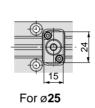
Pari	ts list		
No.	Description	Material	Note
22*	Rod seal	NBR	
23*	Gasket A	NBR	
24*	Gasket B	NBR	
25	Piston gasket	NBR	ø32 to ø100 only
26	Lock bolt	Carbon steel	Zinc chromated
27	Lock holder	Brass	Electroless nickel plated
28	Lock piston	Carbon steel	Nickel plated
29	Lock spring	Stainless steel	
30	Seal retainer	Carbon steel	Zinc chromated (ø80, ø100 only)
31	Bumper	Urethane	
32*	Hexagon socket head cap screw	Carbon steel	Black zinc chromated
33*	Hexagon socket head cap screw	Carbon steel	Nickel plated (ø50, ø63 only)
34	Cap A	Die-cast aluminum	Black coated
35	Сар В	Carbon steel	SQ treated
36	Rubber cap	Synthetic rubber	
37	M/O knob	Die-cast zinc	Black coated
38	M/O bolt	Alloy steel	Black zinc chromated
39	M/O spring	Steel wire	Chromated
40	Stopper ring	Carbon steel	Chromated
41*	Lock piston seal	NBR	
42*	Lock holder gasket	NBR	

Replacement parts: Seal kits

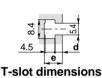

Bore size (mm)	Kit no.	Contents
63	MGP63-B-PS	Kits include items
80	MGP80-B-PS	21, 22, 23, 24, 32, 33, 41 and 42
100	MGP100-B-PS	from the table above.
1: 00 14		1, 1

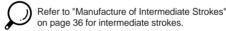

^{*} Items 32 and 33 are not included for bores sizes 80 and 100.




Series MGP

Dimensions/Ø20, Ø25





(mm) Bore size е (mm) 20 2.8 7.8 25 3 8.2

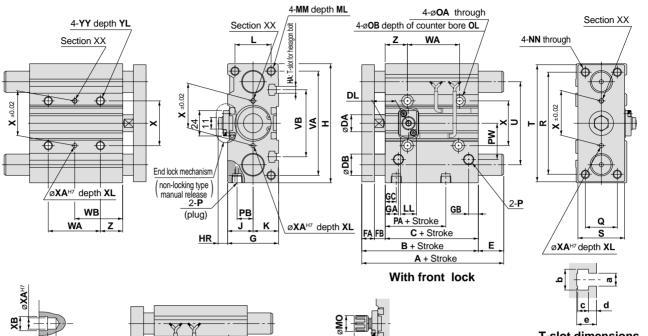
With rear lock

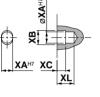
(mm) Standard stroke (mm) Bore size В С DA G GA GB Н Κ L MM ML NN РΒ PW Q R (mm) 78 62 10 36 10.5 8.5 83 18 18 24 M5 x 0.8 13 M5 x 0.8 10.5 25 18 70 25, 50, 75, 100, 125, 150, 175 25 200, 250, 300, 350, 400 62.5 12 42 11.5 9 93 21 21 30 M6 x 1.0 M6 x 1.0 13.5 28.5 26 78 15

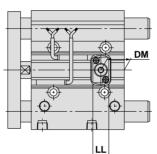
																(mm)
Bore size		_		\/A	VD		WA				WB t 75st or less to 175st to 175st to 250st Over 175st over 250				VA	VD
(mm)	S	'	U	VA	VB	75st or less	Over 75st to 175st	Over 175st to 250st	Over 250st	75st or less	Over 75st to 175st	Over 175st to 250st	Over 250st	Χ	XA	ХВ
20	30	81	54	72	44	44	120	200	300	39	77	117	167	28	3	3.5
25	38	91	64	82	50	44	120	200	300	39	77	117	167	34	4	4.5

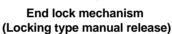
End lock mechanism dimensions (mm) Bore size DL DM HN HR (mm) 20 10.5 21 19 22 25 26.5 16 8 19.5

MGPN	l (slide	bearir	ng)/Dim	nensio	ns A, D	B, E	(mm)		
Bore size		Α			E				
(mm)	75st or less	Over 75st to 175st	Over 175st	DB	75st or less	Over 75st to 175st	Over 175st		
20	78	84.5	122	12	0	6.5	44		
25	78.5	85	122	16	0	6.5	43.5		
MGPL	(ball b	ushing)/Dime	nsions	s A, DB	, E	(mm)		
Bore size		Α		-		Е			
(mm)	25st or less	Over 25st to 175st	Over 175st	DB	25st or less	Over 25st to 175st	Over 175st		
20	80	104	122	10	2	26	44		


104.5


43.5


Compact Guide Cylinder With End Lock


Dimensions/ \emptyset 32 to \emptyset 63

Section XX detail

	1-	SIOT	ımer	ision	(mm)
Bore size (mm)	а	b	С	d	е
32	6.5	10.5	5.5	3.5	9.5
40	6.5	10.5	5.5	4	11
50	8.5	13.5	7.5	4.5	13.5
63	11	17.8	10	7	18.5

(mm)

Series MGP

With rear lock

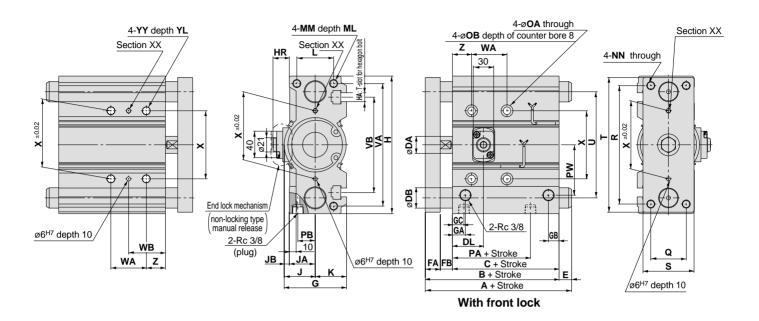
						cai ic	, O.K												(mm)
Bore size (mm)	Standard stroke (mm)	В	O	DA	FA	FB	G	GA	GB	GC	н	НА	J	к	L	ММ	ML	NN	OA
32	25, 50, 75, 100	84.5	62.5	16	12	10	48	12.5	9	12.5	112	M6	24	24	34	M8 x 1.25	20	M8 x 1.25	6.6
40	125, 150, 175	91	69	16	12	10	54	14	10	14	120	M6	27	27	40	M8 x 1.25	20	M8 x 1.25	6.6
50	200, 250, 300	97	69	20	16	12	64	14	11	12	148	M8	32	32	46	M10 x 1.5	22	M10 x 1.5	8.6
63	350, 400	102	74	20	16	12	78	16.5	13.5	16.5	162	M10	39	39	58	M10 x 1.5	22	M10 x 1.5	8.6

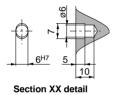
Bore size (mm OB OL P PA PB PW Q R S T U VA VB WA									w		(11111)										
(mm	ОВ	OL	F	FA	PB	PW	3	K	3		ס	VA	7	75st or less	Over 75st to 175st	Over 175st to 275 st	Over 275st	75st or less	Over 75st to 175st	Over175st to 275 st	Over 275st
32	11	7.5	Rc 1/8	32	15	34	30	96	44	110	78	98	63	48	124	200	300	45	83	121	171
40	11	7.5	Rc 1/8	38	18	38	30	104	44	118	86	106	72	48	124	200	300	46	84	122	172
50	14	9	Rc 1/4	34	21.5	47	40	130	60	146	110	130	92	48	124	200	300	48	86	124	174
63	14	9	Rc 1/4	39	28	55	50	130	70	158	124	142	110	52	128	200	300	50	88	124	174

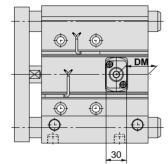
								(111111)
Bore size (mm)	х	ХА	ХВ	хс	XL	YY	YL	Z
32	42	4	4.5	3	6	M8 x 1.25	16	21
40	50	4	4.5	3	6	M8 x 1.25	16	22
50	66	5	6	4	8	M10 x 1.5	20	24
63	80	5	6	4	8	M10 x 1.5	20	24

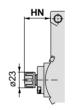
Bore size		Α		DB	E				
(mm)	25st or less	Over 25st to 175st	Over 175st	ЪВ	25st or less	Over 25st to 175st	Over 175s		
32	97	102	140	20	12.5	17.5	55.5		
40	97	102	140	20	6	11	49		
50	106.5	118	161	25	9.5	21	64		
63	106.5	118	161	25	4.5	16	59		

MGPM (slide bearing)/Dimensions A, DB, E


End lock mechanism (mm)													
Bore size (mm)	DL	DM	HR	HN (max.)	LL	МО							
32	22	22	9.5	21	15	15							
40	26	23	11.5	25.5	21	19							
50	24	23	13	27	21	19							
63	25	25.5	11	25	21	19							


I	MGPL (ball bushing)/Dimensions A, DB, E												
	Bore size		, ,	4		DB	E						
	(mm)	25st or less	Over 25st to 75st	Over 75st to 175st	Over 175st	DD	25st or less	Over 25st to 75st	Over 75st to 175st	Over 175st			
	32	84.5	98	118	140	16	0	13.5	33.5	55.5			
	40	91	98	118	140	16	0	7	27	49			
_	50	97	114	134	161	20	0	17	37	64			
	63	102	114	134	161	20	0	12	32	59			




Series MGP

Dimensions/Ø80, Ø100

With rear lock

End lock mechanism (Locking type manual release)

T-slot dimensions

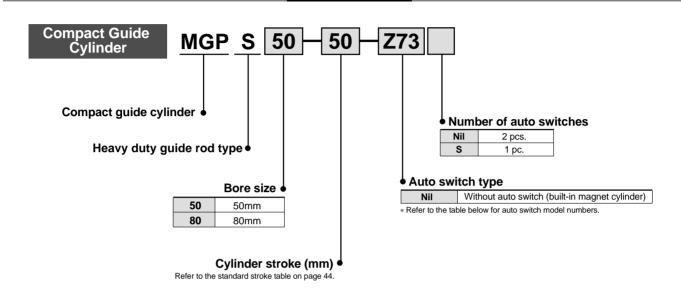
(mm)

					(mm)
Bore size (mm)	а	b	С	d	е
80	13.3	20.3	12	8	22.5
100	15.3	23.3	13.5	10	30

																	(111111)
Bore size (mm)	Standard stroke (mm)	В	С	DA	FA	FB	G	GA	GB	GC	н	НА	J	JA	JB	к	L
80	25, 50, 75, 100, 125, 150, 175	146.5	106.5	25	22	18	91.5	19	15.5	14.5	202	M12	45.5	38	7.5	46	54
100	200, 250, 300, 350, 400	166	116	30	25	25	111.5	23	19	18	240	M14	55.5	45	10.5	56	62

																			(111111)
Bore size	NANA	BA1	NINI .	0.4	OB	DA						_		.,,	./5		W	Α	
(mm)	ММ	ML	NN	OA	ОВ	PA	PB	PW	Q	K	8	ı	U	VA	VB	50st or less	Over 50st to 150st	Over 150st to 250st	Over 250st
80	M12 x 1.75	25	M12 x 1.75	10.6	17.5	64.5	25.5	74	52	174	75	198	156	180	140	52	128	200	300
100	M14 x 2.0	31	M14 x 2.0	12.5	20	67.5	32.5	89	64	210	90	236	188	210	166	72	148	220	320

								(111111)
Bore size (mm)			В		v	YY	VI	-
	50st or less	Over 50st to 150st	Over 150st to 250st	Over 250st	Х		YL	
80	54	92	128	178	100	M12 x 1.75	24	28
100	47	85	121	171	124	M14 x 2.0	28	11


End lock	End lock mechanism dimensions (mm)											
Bore size (mm)	DL	DM	HR	HN								
80	45.5	40.5	24	38.5								
100	49	43.5	26.5	41								

MGPM (slide bearing)/Dimensions/A, DB, E (mm)											
Bore size		4	DB	E							
(mm)	150st or less	Over 150st		150st or less	Over 150st						
80	146.5	193	30	0	46.5						
100	100 166		36	0	37						

MGPL (ball bushing)/Dimensions A, DB, E (mm)												
Bore size	-	4	DB	E								
(mm)	150st or less	Over 150st		150st or less	Over 150st							
80	160	193	25	13.5	46.5							
100	180	203	30	14	37							

ALMOTION Compact Guide Cylinder: Heavy Duty Guide Rod Type Series NGPS ø50, ø80

How to Order

Applicable auto switches

		- 1		100	L	oad vo	ltage	Auto swit		Lead wi	re length	(m) Note 1)			Detailed								
Туре	Special function	Electrical entry	Indicator light	Wiring (output)		C	AC	Electrical er	ntry direction	0.5	3	5	Applical	ble load	Detailed specifications								
		Citty	ligiti	(output)		'		Perpendicular	In-line	(Nil)	(L)	(Z)											
				3 wire	_	5V	_	_	Z 76	•	•	_	IC circuit	_									
Reed switch	_	Grommet	Yes	Queiro	24)/	12V	100V	_	Z73	•	•	•	_	Relay,	P. 59								
			No	2 wire	24V	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLĆ									
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC										
	_			3 wire (PNP)		12V		Y7PV	Y7PV Y7P		•	0	circuit		P. 60								
									2 wire		12V		Y69B	Y59B	•	•	0	_					
Solid state	Diagnostic	Grommet	Yes	3 wire (NPN)	24V	5V		Y7NWV	Y7NW	•	•	0	IC	Relay,									
switch	indication (2 colour	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	Grommet	162	3 wire (PNP)	24 V	12V		Y7PWV	Y7PW	•	•	0	circuit	PLC	P. 61
	indicator)					12V		Y7BWV	Y7BW	•	•	0											
	Water resistant (2 colour indicator)			2 wire	12			_	Ү 7ВА	_	•	0	_		P. 62								
	Magnetic field resistant (2 colour indicator)					_		_	P5DW	_	•	•			P. 63								

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B

3m L Y69BZ 5m Z

Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Series MGPS

Specifications

Action	Double acting
Fluid	Air
Proof pressure	1.5MPa
Maximum operating pressure	1.0MPa
Minimum operating pressure	0.1MPa
Ambient and fluid temperature	-10 to 60°C (with no freezing)
Piston speed	50 to 400mm/s
Cushion	Rubber bumper at both ends
Lubrication	Non-lube
Stroke length tolerance	^{+1.5} ₀ mm

Standard Strokes

Bore size (mm)	Standard stroke (mm)
50, 80	25, 50, 75, 100, 125, 150, 175, 200

Manufacture of Intermediate Strokes

Modification method	Spacer installation type Spacers are installed in a standard stroke cylinder. Available in 5mm stroke increments
Part number	Refer to page 43 for standard part numbers and ordering procedure.
Applicable stroke (mm)	5 to 195
Example	Part no.: MGPS50—35 A spacer 15mm in width is installed in a MGPS50—50. C dimension is 94mm.

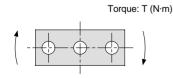
Note 1) The minimum stroke for mounting auto switches is 10mm or more for two switches, and 5mm or more for one switch. Note 2) Intermediate strokes (in 1mm increments) with a special body are available by special order.

Theoretical Output

Bore size (mm)	Rod	Operating	Piston Operating pressure (MPa)									
	size (mm)	direction	(mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
50	00	OUT	1963	393	589	785	982	1178	1374	1571	1767	1963
50	20	IN	1649	330	495	660	825	990	1155	1319	1484	1649
80	25	OUT	5027	1005	1508	2011	2513	3016	3519	4021	4524	5027
80	25	IN	4536	907	1361	1814	2268	2721	3175	3629	4082	4536

Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

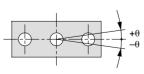
Weights


(kg)

									(3/		
Bore size	Model	Standard stroke (mm)									
(mm)		25	50	75	100	125	150	175	200		
50	MGPS50	3.90	4.68	5.74	6.52	7.30	8.08	8.86	9.64		
80	MGPS80	9.21	10.7	13.0	14.5	15.9	17.9	18.9	20.3		

Auto switch mounting bracket part no. for D-P5DW

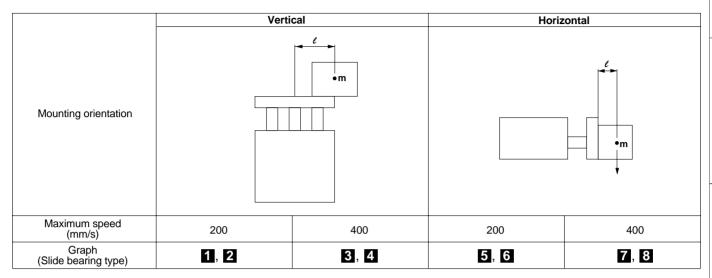
Bore size (mm)	Mounting bracket part no.	Notes				
		Switch mounting bracket Hexagon socket head cap screw				
50, 80	BMG1-040	(M2.5 x 0.45 x 8 <i>l</i>) 2 pcs.				
30, 80		Hexagon socket head cap screw (M3 x 0.5 x 16 ℓ) 2 pcs.				
		Spring washer (nominal size 3)				


Allowable Rotational Torque of Plate

_	
т	(N·m

Bore size	Bore size		Standard stroke (mm)								
(mm)	Model	25	50	75	100	125	150	175	200		
50	MGPS50	15	12	16	15	13	12	11	9.8		
80	MGPS80	49	41	51	45	41	38	35	32		

Non-rotating Accuracy of Plate



accuracy θ without load, use a value no more than the values in the table as a

Bore size (mm)	Model	Non-rotating accuracy θ
50	MGPS50	±0.05°
80	MGPS80	±0.04°

Series MGPS **Model Selection**

Selecting Conditions

Selection Example 1 (Vertical Mounting)

Selecting conditions Mounting: Vertical Stroke: 50mm

Maximum speed: 200mm/s Load weight: 100kg Eccentric distance: 100mm

Find the point of intersection for the load weight of 100kg and the eccentric distance of 100mm on graph 1, based on vertical mounting, 50mm stroke, and the speed of 200mm/s.

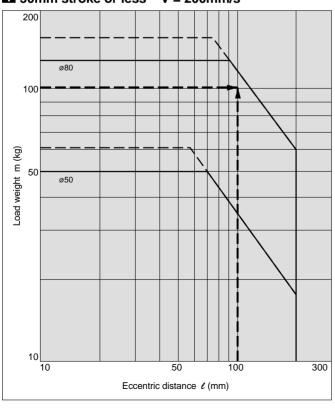
→MGPS80-50 is selected.

Selection Example 2 (Horizontal Mounting)

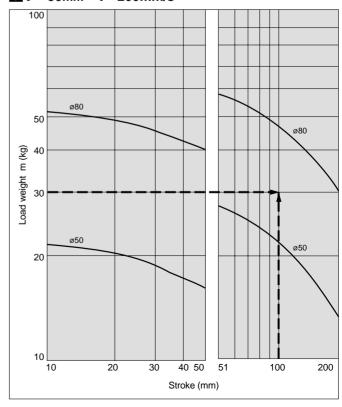
Selecting conditions

Mounting: Horizontal

Distance between plate and load center of gravity: 50mm


Maximum speed: 200mm/s Load weight: 30kg

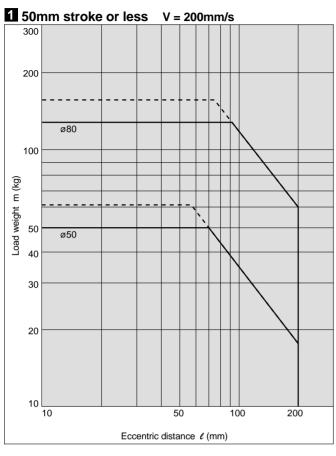
Stroke: 100mm

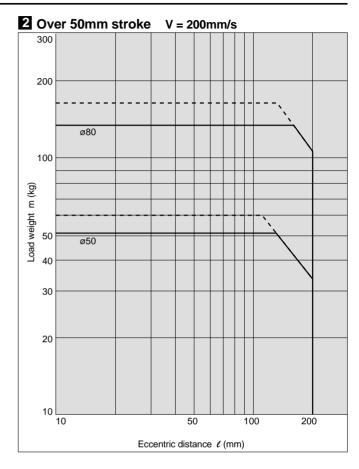

Find the point of intersection for the load weight of 30kg and stroke of 100mm on graph 5, based on horizontal mounting, the distance of 50mm between the plate and load center of gravity,

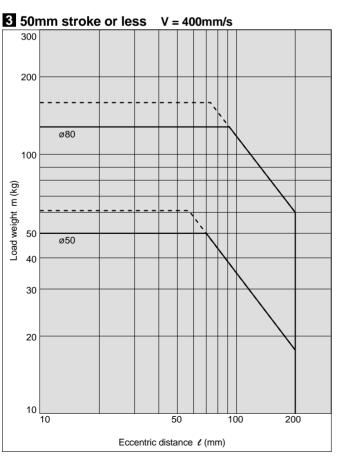
and the speed of 200mm/s. →MGPS80-100 is selected.

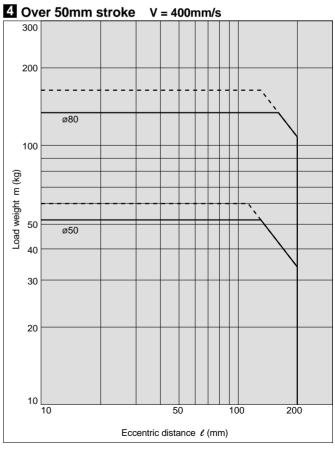
1 50mm stroke or less V = 200mm/s

$\ell = 50 \text{mm} \text{ V} = 200 \text{mm/s}$

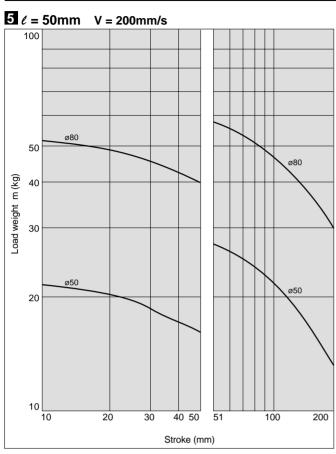


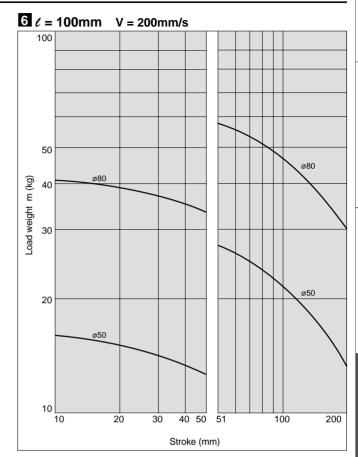

Series MGPS

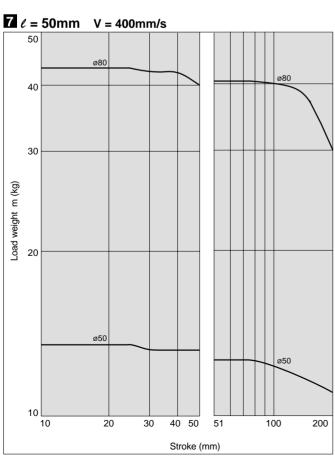

Vertical Mounting Slide Bearing

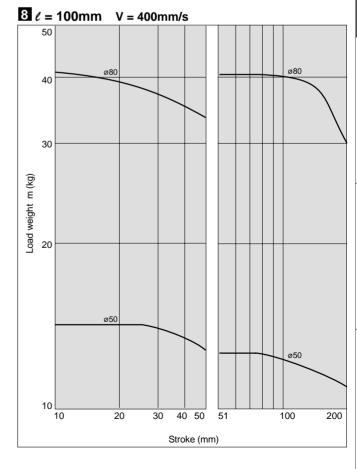

Operating pressure: 0.4MPa Operating pressure: 0.5MPa or more

MGPS50, 80

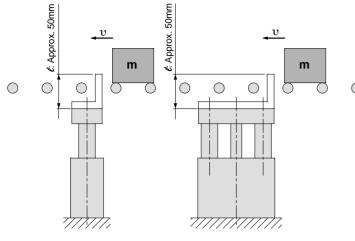


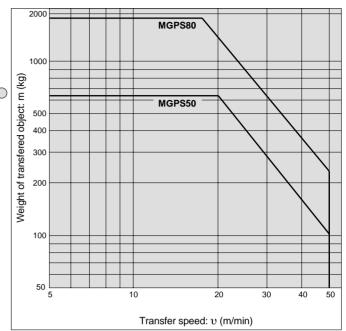

Compact Guide Cylinder
Heavy Duty Guide Rod Type


Series MGPS


Horizontal Mounting Slide Bearing

MGPS50, 80



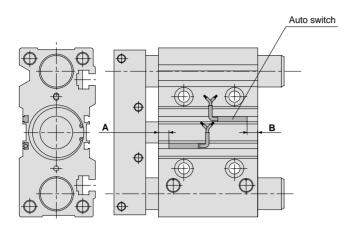


Series MGPS

Operating Range when Used as Stopper

* When selecting a model with a longer ℓ dimension, be sure to choose a bore size which is sufficiently large.

Handling precautions

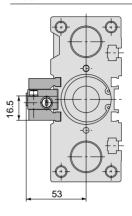

Note) When using as a stopper, select a model with a stroke of 50mm or less.

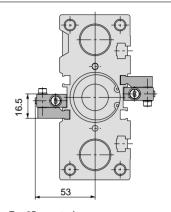
Compact Guide Cylinder Compact Guide Cylinder
Heavy Duty Guide Rod Type

Series MGPS

Auto Switches/Proper Mounting Position for Stroke End Detection

Proper mounting p	(mm)	
Bore size (mm)	Δ	R


Bore size (mm)	Α	В
50	7.5	11.5
80	13	37


Note) Minimum mountable strokes for auto switch are 10mm or more for two switches, and 5mm or more for one switch.

For D-P5DW

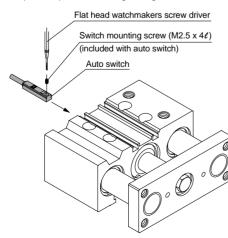
ø50

Ø80

For 25mm stroke
* For bore sizes Ø40 through 63 with two switches, one switch is mounted on each

84.4

Auto Switch Mounting


⚠ Caution

Auto switch mounting tool

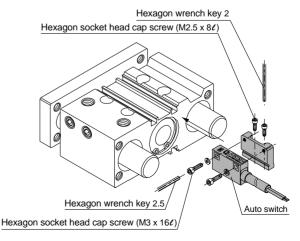
• When tightening the auto switch mounting screw (included with auto switch), use a watchmakers screw driver with a handle about 5 to 6mm in diameter.

Tightening torque

• Tighten with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be felt.

For D-P5DW

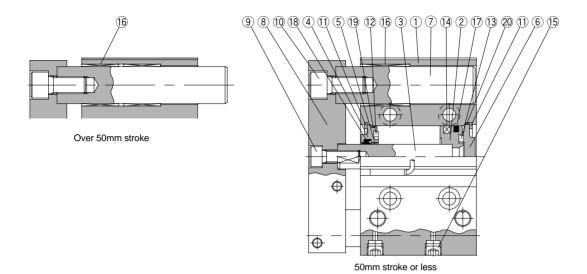
60.7


⚠ Caution

Auto switch mounting tool

• When tightening hexagon socket head cap screws of the auto switch, use hexagon wrench key 2 or 2.5 with the appropriate screws.

Tightening torque


• Tighten M2.5 screws with a torque of about 0.3 to 0.5N·m, and M3 screws with a torque of about 0.5 to 0.7N·m.

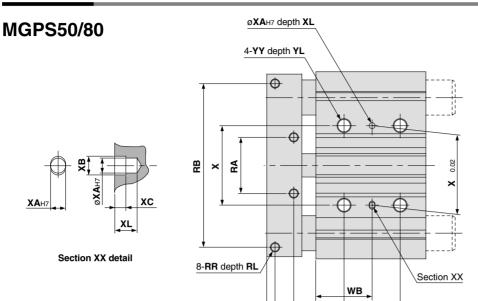
Series MGPS

Construction

Parts list

No.	Description	Material		Note		
1	Body	Aluminum alloy		anodized		
2	Piston	Aluminum alloy		Chro	omated	
3	Piston rod	Carbon steel		Hard chi	rome plated	
4	Collar	Aluminum alloy casting	Coated			
5	Bushing	Lead bronze casting				
6	Head cover	Aluminum alloy	ø50	50 Colorless chromated		
•	nead cover	Aldifilliant alloy	ø80	Coated		
7	Guide rod	Carbon steel	H	lard chr	ome plated	
8	Plate	Carbon steel	Nickel plated			
9	Plate mounting bolt A	Carbon steel	Nickel plated For pis		For piston rod	
10	Plate mounting bolt B	Carbon steel	Nickel plated For gui		For guide rod	

Replacement parts: Seal kits

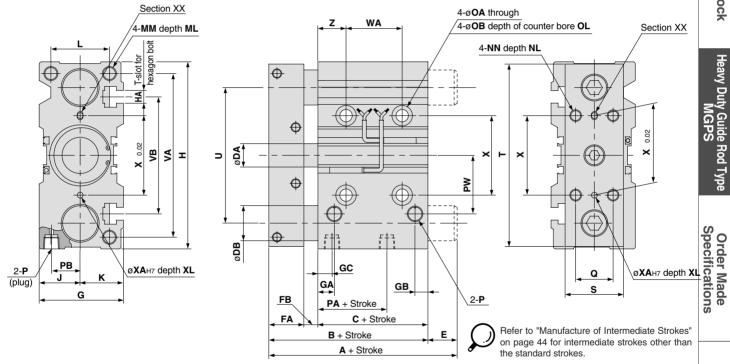

Bore size (mm)	Kit no.	Contents
50	MGP50-PS	Kits include items
80	MGP80-PS	17, 18, 19 and 20 from the table above.

^{*} Seal kits are sets consisting of items 17 through 20 above, and can be ordered using the kit number for each bore size.

Parts list

No.	Description	Material	Note
11	Snap ring	Carbon tool steel	Phosphate coated
12	Bumper A	Urethane	
13	Bumper B	Urethane	
14	Magnet	Synthetic rubber	
15	Hexagon socket head taper plug	Carbon steel	Nickel plated
16	Slide bearing	Lead bronze casting	
17*	Piston seal	NBR	
18*	Rod seal	NBR	
19*	Gasket A	NBR	
20*	Gasket B	NBR	


Dimensions


QA

QB

T-slot dimensions

(mm) Bore size (mm) T-slot dimensions е 50 17.8 17.5 11 10 6 13.3 20.3 12 22.5

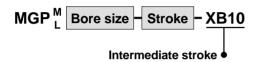
WA

Dimensions

Dillione	,,,,,,																					(111111)
Bore size	Standard stroke		Α		В	С	D/	A DI	ь		E	FA	FB	G	GA	GB	GC	н	НА	J	К	
(mm)	(mm)	25, 5	0st (Over 50	st		UF	` D	25	, 50st	Over 50st	FA	ГБ	G	GA	GB	GC	П	ПА	J	Λ.	L
50	25, 50, 75, 100,	8	6	110	86	3 44	20	3(0	0	24	29.5	12.5	72	14	11	12	160	M10	35	37	50
80	125, 150, 175, 200	118	8	151	118	3 65	25	4	5	0	33	35	18	95	19	24	14.5	242	M12	47	48	66
Bore size (mm)	Standard stroke (mm)	М	М	ML	N	IN	NL	OA	ОВ	OL	Р	PA	РВ	PW	Q	QA	QB	RA	RB	RF	3	RL
50	25, 50, 75, 100,	M12	x 1.75	20	M10	x 1.5	20	10.6	17.5	13	Rc 1/4	9	24.5	50	32	16	7	48	140	M8 x	1.25	14
80	125, 150 ,175, 200	M16	6 x 2	32	M12	x 1.75	24	12.5	20	17.5	Rc 3/8	14.5	29	77	40	18	9	80	200	M10	(1.5	20
Bore size	Standard stroke	s	_	U	VA	VB			W	A				٧	VB			x	XA	хв	хс	XL
(mm)	(mm)	3	'	"	VA	VD	25	st	50, 75,	100st	Over 100st	2	:5st	50, 75	5, 100st	Over	100st	^	AA	ΛD	ΧC	۸L
50	25, 50, 75, 100,	50	156	116	140	100	24	1	4	3	124	;	36	4	18	8	36	68	5	6	4	8
80	125, 150, 175, 200	65	228	170	214	138	28	3	5	2	128	-	42	5	54	6	92	100	6	7	5	10

Bore size (mm)	Standard stroke (mm)	YY	YL	z	
50	25, 50, 75, 100,	M12 x 1.75	24	24	
80 125, 150, 175, 200		M14 x 2	28	28	

Series MGP Order Made Specifications

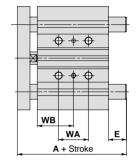

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

	Order made specification							
1	Intermediate stroke (special body type)	-XB10						
2	With air cushion/Intermediate stroke (spacer installed type)	-XC19						
3	Heat resistant cylinder	-XB6						
4	Low speed cylinder	-XB13						
(5)	Fluoro rubber seal	-XC22						

	Order made specification	Symbol
6	With heavy duty scraper	-XC4
7	With coil scraper	-XC35
8	Adjustable stroke cylinder/Adjustable extension type	-XC8
9	Adjustable stroke cylinder/Adjustable retraction type	-XC9
10	Stainless steel used for piston rod, plate, etc.	-XC6

1 Intermediate Strokes (Special Body Type)

-XB10



When using an intermediate stroke, the overall length of the cylinder can be shortened by using a special body without the installation of spacers.

Stroke ranges

Bore size (mm)	Stroke range (mm)				
12, 16	10 to 250				
20, 25	20 to 400				
32, 40, 50, 63, 80, 100	25 to 400				

* Specifications other than the stroke range are the same as standard products.

Dimensions

MGPM, MGPL-XB10/Dimensions WA, WB

- 1	mm)
١ ١	mm)

Bore size	Standard stroke		W	/A		WB			
(mm) (mm)	10 to 39st	40 to 100st	101 to 200st	201 to 250st	10 to 39st	40 to 100st	101 to 200st	201 to 250st	
12	10 to 250	20	40	110	200	15	25	60	105
16	10 10 250	24	44	110	200	17	27	60	105

Bore size	Standard stroke	WA					WB				
(mm) (mm)	(mm)	20 to 39st	40 to 124st	125 to 200st	201 to 300st	301 to 400st	20 to 39st	40 to 124st	125 to 200st	201 to 300st	301 to 400st
20	20 45 400	24	44	120	200	300	29	39	77	117	167
25	20 to 400	24	44	120	200	300	29	39	77	117	167

Bore size	Standard stroke	WA					WB				
(mm) (mm)	25 to 49st	50 to 124st	125 to 200st	201 to 300st	301 to 400st	25 to 49st	50 to 124st	125 to 200st	201 to 300st	301 to 400st	
32		24	48	124	200	300	33	45	83	121	171
40		24	48	124	200	300	34	46	84	122	172
50	25 to 400	24	48	124	200	300	36	48	86	124	174
63	25 10 400	28	52	128	200	300	38	50	88	124	174
80		28	52	128	200	300	42	54	92	128	178
100		48	72	148	220	320	35	47	85	121	171

MGPM (slide bearing)/Dimensions A, E

MGPM (slide bearing)/Dimensions A, E											
Bore size (mm)		Α		E							
	10 to 74st	75 to 100st	101 to 250st	10 to 74st	75 to 100st	101 to 250st					
12	42	60.5	85	0	18.5	43					
16	46	64.5	95	0	18.5	49					

Bore size		Α		E			
(mm)	20 to 74st	75 to 200st	201 to 400st	20 to 74st	75 to 200st	201 to 400st	
20	53	84.5	122	0	31.5	69	
25	53.5	85	122	0	31.5	68.5	

Bore size		Α		E			
(mm)	25 to 74st	75 to 200st	201 to 400st	25 to 74st	75 to 200st	201 to 400st	
32	97	102	140	37.5	42.5	80.5	
40	97	102	140	31	36	74	
50	106.5	118	161	34.5	46	89	
63	106.5	118	161	29.5	41	84	
80	115	142	193	18.5	45.5	96.5	
100	137	162	203	21	46	87	

^{*} Dimensions other than those in the above tables are the same as standard products.

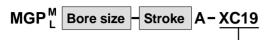
MGPL (ball bushing)/Dimensions A, E

(mm)

Bore size (mm)		Α		E			
	10 to 39st	40 to 100st	101 to 250st	10 to 39st	40 to 100st	101 to 250st	
12	43	55	85	1	13	43	
16	49	65	95	3	19	49	

Bore size (mm)			4		E			
	20 to 39st	40 to 124st	125 to 200st	201 to 400st	20 to 39st	40 to 124st	125 to 200st	201 to 400st
20	63	80	104	122	10	27	51	69
25	69.5	85.5	104.5	122	16	32	51	68.5

Bore size		1	4		E			
(mm)	25 to 74st	75 to 124st	125 to 200st	201 to 400st	25 to 74st	75 to 124st	125 to 200st	201 to 400st
32	81	98	118	140	21.5	38.5	58.5	80.5
40	81	98	118	140	15	32	52	74
50	93	114	134	161	21	42	62	89
63	93	114	134	161	16	37	57	84


Bore size	A				E			
(mm)	25 to 49st	50 to 74st	75 to 200st	201 to 400st	25 to 49st	50 to 74st	75 to 200st	201 to 400st
80	109.5	130	160	193	13	33.5	63.5	96.5
100	121	147	180	203	5	31	64	87

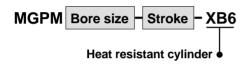
Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

2 With Air Cushion/Intermediate Strokes (Spacer Installed Type)

-XC19

With air cushion/Intermediate stroke

The collar of of the standard stroke cylinder is changed to accommodate intermediate strokes in 1mm increments.


Intermediate strokes (in 1mm increments) with a special body are available by special order.

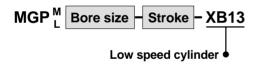
Stroke range (mm)
26 to 99
26 to 199
51 to 199

^{*} Specifications and dimensions are the same as the standard products with air cushion.

3 Heat Resistant Cylinder

-XB6

Cylinder with modified seal and grease materials to make possible high temperature operation up to an ambient temperature of 150°C.


Specifications

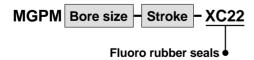
Applicable series	МСРМ
Bearing type	Slide bearing
Cylinder bore size (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
Ambient temperature range	−10 to 150°C
Seal material	Fluoro rubber
Grease	Heat resistant grease
Cushion	None
Auto switch	Not applicable

- * 1. Dimensions are the same as standard products.
- * 2. Refer to page 56 for allowable kinetic energy.

4 Low Speed Cylinder

-XB13

Operates smoothly, without sticking and slipping, at drive speeds as low as 5 to 50mm/s.


Specifications

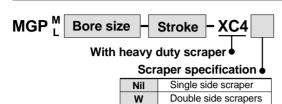
Applicable series	MGPM, MGPL
Bearing type	Slide bearing, Ball bushing
Cylinder bore size (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
Piston speed	5 to 50mm/s
Cushion	Rubber bumper

^{*} Dimensions are the same as standard products

5 Fluoro Rubber Seals

-XC22

Seals are changed to a fluoro rubber material which has outstanding resistance to chemicals.


Specifications

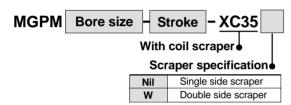
-promounting	
Applicable series	MGPM
Bearing type	Slide bearing
Cylinder bore size (mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
Cushion	None
Auto switch	Mountable

- * 1. Dimensions are the same as standard products.
- * 2. Refer to page 56 for allowable kinetic energy.

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

6 With Heavy Duty Scraper

With a heavy duty scraper used for the piston rod and guide rod sections, this specification is ideal for cylinders used in a dusty environment, or in environments where there is contact with earth and sand, such as molding machines, construction equipment, and industrial vehicles, etc.


Furthermore, depending on the mounting orientation, the scraper on the plate side only (-XC4) or the double side scraper (-XC4W) can be selected.

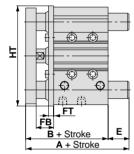
Specifications

•				
Applicable se	eries	MGPM, MGPL		
Bearing type		Slide bearing, Ball bushing		
Cylinder bore size (mm)		20, 25, 32, 40, 50, 63, 80, 100		
Minimum	Single side	0.12MPa		
operating pressure	Double side	0.14MPa		

^{*} Refer to the tables below for dimensions.

With Coil Scraper

Removes frost, welding spatter, and machining chips from the piston rod and the guide rod, and protects the seals.


Furthermore, depending on the mounting orientation, the scraper on the plate side only (-XC35) or the double side scraper (-XC35W) can be selected.

Specifications

Applicable s	eries	MGPM		
Bearing type		Slide bearing		
Cylinder bore size	(mm)	20, 25, 32, 40, 50, 63, 80, 100		
Minimum	Single side	0.12MPa		
operating pressure	Double side	0.14MPa		

^{*} Refer to the tables below for dimensions

With Heavy Duty Scraper/With Coil Scraper Common Dimensions

MGPM, MGPL Common dimensions (mm)

Bore size (mm)	В	FB	FT
20	63	16	5
25	63.5	16	5
32 69.		20	6
40	76	20	6
50	82	22	6
63	87	22	6
80	106.5	28	6
100	126	35	9

With double side scrapers Dimensions AW, EW, MT, DS (mm)

Bore size	A 1A/	EW	мт	DS *		
(mm)	AW	EVV	IVI I	MGPM	MGPL	
20	74	6	6	17	15	
25	74.5	6	7	21	19	
32	82.5	7	8.5	26	21	
40	89	7	9	26	21	
50	95	7	11	31	26	
63	100	7	11	31	26	
80	120.5	8	14	36	31	
100	143	8	16	44	36	

^{*} By-pass port size for guide rod with bottom mount

EW Stroke

The figure shows the heavy duty scraper (-XC4). Cylinders with coil scraper (-XC35) are without this lip.

For cylinder with double side scraper

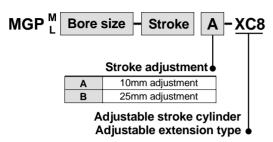
MGPL (ball bushing)/Dimensions A, E, HT

(mm)
 нт

Bore size	A				E				
(mm)	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	30st or less	Over 30st to 100st	Over 100st to 200st	Over 200st	HT
20	73	90	114	132	10	27	51	69	80
25	79.5	95.5	114.5	132	16	32	51	68.5	93

Bore size	A				E				į.
(mm)	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	50st or less	Over 50st to 100st	Over 100st to 200st	Over 200st	нт
32	91	108	128	150	21.5	38.5	58.5	80.5	110
40	91	108	128	150	15	32	52	74	118
50	103	124	144	171	21	42	62	89	146
63	103	124	144	171	16	37	57	84	160

Bore size		F	1			шт			
(mm)	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	25st or less	Over 25st to 50st	Over 50st to 200st	Over 200st	НТ
80	119.5 140		170	203	13	33.5	63.5	96.5	201
100	131	157	190	213	5	31	64	87	238


MGPM (slide bearing)/Dimensions A. E. HT

(3.		∝ ອ <i>ງ</i> ,			· ·, -, ·		(111111)					
Bore size		Α			E	HT						
(mm)	50st or less	Over 50st to 200st	Over 200st	50st or less	Over 50st to 200st	Over 200st	XC4	XC35				
20	63	94.5	132	0	31.5	69	80	80				
25	25 63.5		132	0	31.5	68.5	93	93				
32	97	112	150	27.5	42.5	80.5	113	110				
40	97	97 112		21	36	74	121	118				
50	106.5	128	171	24.5	46	89	153	146				
63	106.5	128	171	19.5	41	84	167	160				
80	125	152	203	18.5	45.5	96.5	205	200				
100	147	172	213	21	46	87	244	238				

Series MGP Order Made Specifications

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

8 Adjustable Stroke Cylinder/Adjustable Extension Type

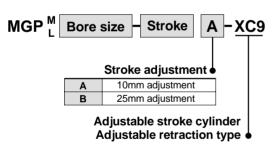
The extended stroke of the cylinder can be adjusted 0 to 10mm or 0 to 25mm from the full stroke.

Install a stroke adjustment mechanism at the head side to adjust the extended stroke.

Specifications

	Applicable series		MGPM, MGPL
	Bearing type		Slide bearing, Ball bushing
	Cylinder bore size	(mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
	Piston speed	ø12 to ø32	50 to 300mm/s
		ø40 to ø100	50 to 400mm/s
	Stroke adjustment	A	10mm
	Stroke adjustifierit	В	25mm

MC (Width across flats) (O) ④ 癌 MP ML + Adjustment MH + Stroke + Adjustment

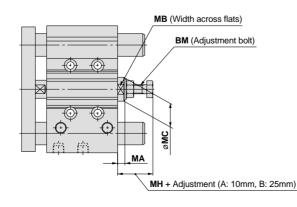

MGPM, MGPL Common dimensions

(mm)

Bore size (mm)			МС	MD	МН	ML	MP	MT	
12	28	16	14	M5 x 0.8	22	9	3	5	
16	20 34 30 22 25 40 30 22		M5 x 0.8	22	9	3	5		
20			M8 x 1.25	30	12.5	3	8		
25			M8 x 1.25	30	12.5	3	8		
32			27	M14 x 1.5	37	16	4	8	
40	60	38	27	M14 x 1.5	37	16	4	8	
50	68	50	36	M18 x 1.5	47	20	4	9	
63	84	50	36	M18 x 1.5	47	20	4	9	
80	114	50	46	M22 x 1.5	58	28	4	12	
100	100 140 65		46	M22 x 1.5	62	28	4	16	

Adjustable Stroke Cylinder/Adjustable Retraction Type

-XC9

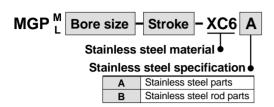


With an adjustment bolt, the retracted stroke of the cylinder can be adjusted 0 to 10mm or 0 to 25mm from the full stroke. (After the stroke adjustment, only the rod side is equipped with a rubber bumper.)

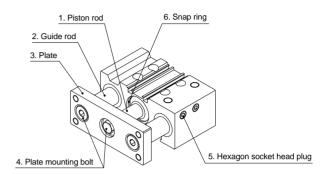
Specifications

Applicable series		MGPM, MGPL
Bearing type		Slide bearing, Ball bushing
Cylinder bore size	(mm)	12, 16, 20, 25, 32, 40, 50, 63, 80, 100
Piston speed	ø12 to ø32	50 to 300mm/s
Fision speed	ø40 to ø100	50 to 400mm/s
Cushion	Rod side	Rubber bumper
Custilott	Head side	None
Strake adjustment	Α	10mm
Stroke adjustment	В	25mm

^{*} Refer to page 56 for the allowable kinetic energy on the retracted side.


MGPM, MGPL Common dimensions (mm)

Bore size (mm)	вм	МА	МВ	МС	МН
12	M5 x 0.8	5	8	12.5	19
16	M6 x 1.0	5	10	11.5	19
20	M8 x 1.25	6.5	13	16	27
25	M8 x 1.25	6.5	13	16	26.5
32	M8 x 1.25	6.5	19	21	26.5
40	M12 x 1.5	9	27	30	33
50	M12 x 1.5	9	30	34	32.5
63	M16 x 1.5	10	36	40	37
80	M20 x 1.5	15	41	46	53.5
100	M24 x 1.5	18	46	52	57.5


Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

10 Stainless Steel Piston Rod, Plate, etc.

The materials used for some of the standard product parts are modified to stainless steel.

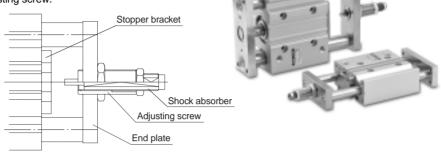

	Stainless steel modified parts
XC6A	1, 2, 3, 4, 5, 6
XC6B	1, 2, 5, 6

Allowable Kinetic Energy for Order Made Specifications (without Bumper)

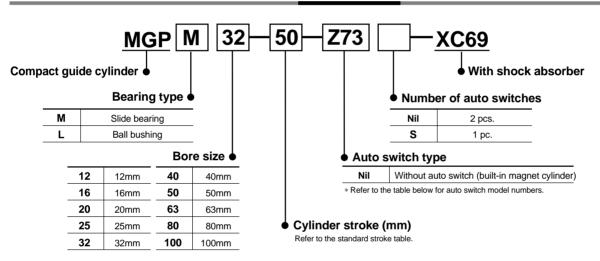
Some of the order made specification cylinders have a construction without internal bumpers. For the following order made products, refer to the graph for their overall load weight (load weight + weight of the moving parts of the cylinder) and piston speed at the stroke end.

Applicable order made products: Heat resistant cylinder (-XB6) Adjustable stroke cylinder/Adjustable retraction type (-XC9) Fluoro rubber seals (-XC22)

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.


-XC69

Absorbs the impact at the extension stroke end.


Extension adjusting mechanism using an adjusting screw.

Extension stroke adjustment

• ø12 to ø25: 15mm • ø32 to ø63: 25mm • ø80, ø100: 30mm

How to Order

Applicable auto switches

	Special function			Mirina	L	oad vo	tage	Auto swit	ch model	Lead	wire leng	th (m)		
Type		Electrical	Indicator light	Wiring (output)		С	AC	Electrical er	try direction	0.5	3	5	Applical	ole load
		entry		(output)	-		AC	Perpendicular	In-line	(Nil)	(L)	(Z)		
		Grommet	.,	3 wire	_	5V	_	_	Z76	•	•	_	IC circuit	
Reed	_		Yes	0 :	04\/	12V	100V	_	Z73	•	•	•	_	Relay,
switch			No	2 wire	24V	5V, 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC
	_			3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC circuit	
				3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	IC circuit	
				2 wire		12V		Y69B	Y59B	•	•	0	-	
Solid state	Diagnostic			3 wire (NPN)		5V		Y7NWV	Y7NW	•	•	0	IC circuit	Relay,
switch	indication	Grommet	Yes	3 wire (PNP)	24V	12V	_	Y7PWV	Y7PW	•	•	0	ic circuit	PLC
SWITCH	(2 color indicator)							Y7BWV	Y7BW	•	•	0		
	Water resistant (2 color indicator)			2 wire		12V		_	Y7BAL	_	•	0		
	Magnetic field resistant (2 color indicator)			Z WIIE		120			P5DW	_	•	•	_	

Note 1) Lead wire symbols 0.5m Nil (Example) Y69B 3m L Y69BL 5m Z Y69BZ Note 2) Solid state auto switches marked with a "O" are produced upon receipt of order.

Note 3) Type P5DW is applicable only to bore sizes ø40 to ø100.

For a 25mm stroke, only one switch is mounted.

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Specifications

Action			Double acting
Fluid			Air
Maximum ope	rating	g pressure	1.0MPa
Proof Pressure	Э		1.5MPa
Minimum N	lote 1)	ø12, ø16	0.12MPa
operating pres		ø20 to ø100	0.10MPa
Ambient and fl	uid te	emperature	−10 to 60°C
Piston speed ^N	lote 2)		Refer to the graphs on the right.
Cuahian	Exte	ended end	Shock absorber
Cushion	Ret	racted end	Rubber cushion
Pooring type			Slide bearing,
Bearing type			Ball bushing

Note 1) Excluding the cushion stroke generated by the shock absorber.

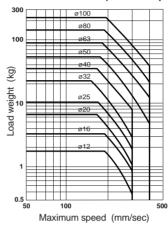
Note 2) Operate at a piston speed that does not exceed the cylinder's allowable

Standard Strokes

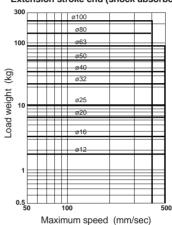
Model	Standard stroke (mm)										
мор м 12	10, 20, 30, 40, 50, 75, 100, 125, 150, 175										
MGP ^M 12	200, 250										
MGP M 20	20, 30, 40, 50, 75, 100, 125, 150, 175, 200										
WIGP _{L 25}	250, 300, 350, 400										
32											
40											
мор м 50	25, 50, 75, 100, 125, 150, 175, 200, 250										
MGP [™] 63	300, 350, 400										
80											
100											

Note 1) Intermediate strokes (in 5mm increments) are produced by installing spacers of 5, 10, 15 and 20mm widths

The overall length (A + stroke x 2) and the guide rod length (E + stroke) shown in the dimensions section do not include the spacer widths Contact SMC when a special intermediate stroke body is needed.


Extension Adjustment Mechanism Specifications

Bore size (mm)	12, 16	20, 25	32, 40	50, 63	80, 100
Shock absorber model	RB0806	RB1007	RB1411	RB2015	RB2725
Max. absorbed energy (J)	2.94	5.88	19.6	58.8	147
Stroke adjustment range (mm)	0 to	– 15	0 to	0 to -30	


Allowable Kinetic Energy

Operate with a load weight and maximum speed within the ranges shown in the graph below.

Retraction stroke end (rubber bumper)

Specific Product Precautions

Be sure to read before handling. Consult SMC when outside the specifications.

Mounting

∕ Warning

Do not put hands or fingers, etc., near the cylinder during operation.

If fingers, etc., are caught in the space between the shock absorber and body, human injury and damage to nearby equipment may occur. Implement protective measures such as mounting of protective covers as needed.

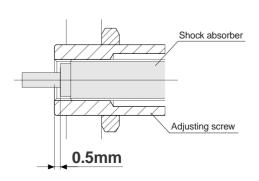
∕!\Caution

As a rule, do not bottom mount the cylinder.

Mounting space is limited at the bottom of the cylinder due to the guide rod and end plate. Use the top or side mount method to mount the cylinder.

Adjustment

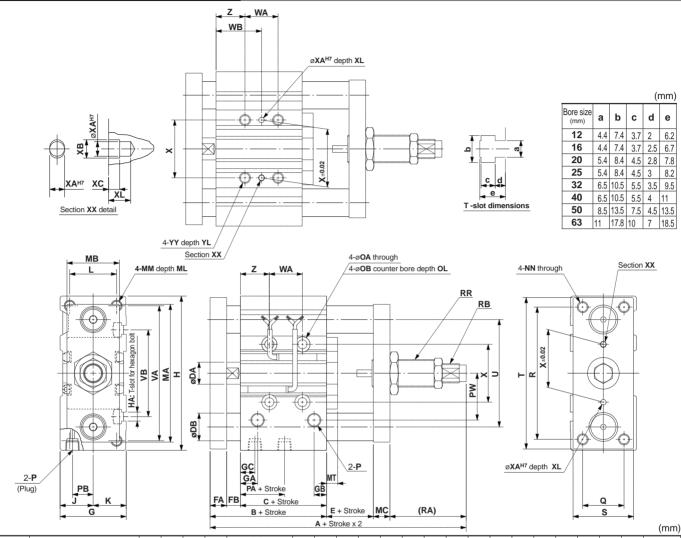
⚠ Caution


1. Adjusting screw adjustment (stroke adjustment)

To make a stroke adjustment, loosen only hexagon nut 1 and rotate the adjusting screw. After adjusting, lock the adjustment with hexagon nut 1. To put the end of the adjusting screw in direct contact with the stopper bracket, fix the adjusting screw at a position where its end protrudes from the end plate. (Refer to the figure on the top right.)

2. Shock absorber replacement

Loosen hexagon nut 2, then rotate the shock absorber counter clockwise and remove it. When mounting a new shock absorber, the end of the adjusting screw must protrude approximately 0.5mm from the shock absorber. (Refer to the figure on the right.)



Series MGP Order Made Specifications

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Dimensions/Ø12 to Ø63

Bore size	Standard stroke (mm)	Α	В	С	DA	D	В	Е	FA	FB	G	GA	GB	GC	н	на	J	к		МΔ	МВ	мс	мт	ММ
(mm)	Standard Stroke (IIIIII)					Slide bearing	Ball bushing	_	1.7)	0,7	05	-	•••	117	•		_	IVIA	1410	1410		
12	10, 20, 30, 40, 50, 75, 100,	90	42	29	6	8	6	7	8	5	26	11	7.5	11	58	M4	13	13	18	51	19	8	6	M4 x 0.7
16	125, 150, 175, 200, 250	94	46	33	8	10	8	7	8	5	30	11	8	11	64	M4	15	15	22	58	19	8	6	M5 x 0.8
20	20, 30, 40, 50, 75, 100, 125, 150, 175, 200,	109	53	37	10	12	10	9	10	6	36	10.5	8.5	10.5	83	M5	18	18	24	68	30	10	8	M5 x 0.8
25	250, 300, 350, 400	109.5	53.5	37.5	12	16	13	9	10	6	42	11.5	9	11.5	93	M5	21	21	30	82	30	10	8	M6 x 1.0
32		135.5	59.5	37.5	16	20	16	9	12	10	48	12.5	9	12.5	112	M6	24	24	34	100	38	12	8	M8 x 1.25
40	25, 50, 75, 100, 125, 150, 175, 200,	142	66	44	16	20	16	9	12	10	54	14	10	14	120	M6	27	27	40	108	38	12	8	M8 x 1.25
50	250, 300, 350, 400	155	72	44	20	25	20	10	16	12	64	14	11	12	148	M8	32	32	46	139	60	16	9	M10 x 1.5
63	200, 000, 000, 100	160	77	49	20	25	20	10	16	12	78	16.5	13.5	16.5	162	M10	39	39	58	153	60	16	9	M10 x 1.5
,																								(mm)

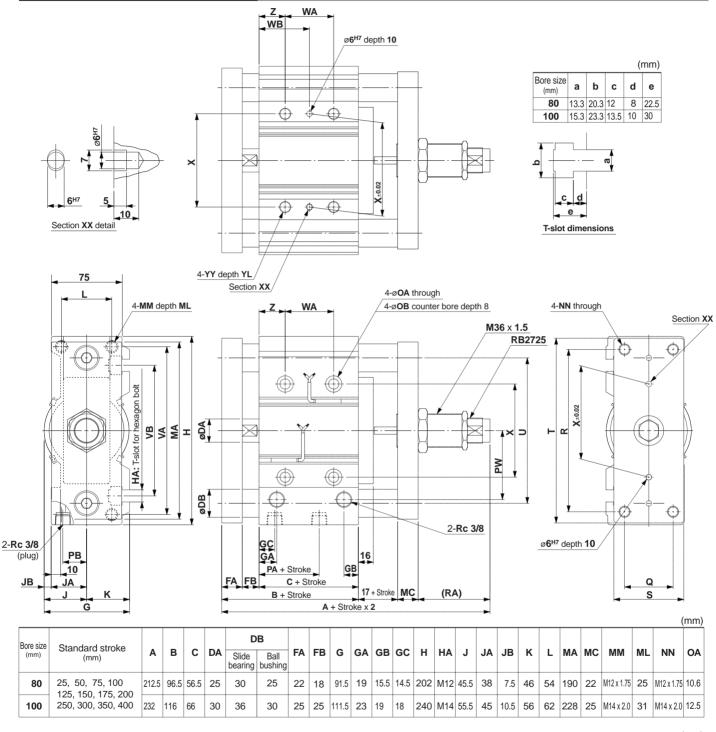
Bore size	ML	NN	ОА	ов	OL	Р	PA	РВ	PW	Q	R	RA	RB	RR	s	Т	U	VA	VB	Х	ХА	ХВ	хс	XL	YY	YL	z
12	10	M4 x 0.7	4.3	8	4.5	M5 x 0.8	13	8	18	14	48	33	RB0806	M12 x 1.5	22	56	41	50	37	23	3	3.5	3	6	M5 x 0.8	10	5
16	12	M5 x 0.8	4.3	8	4.5	M5 x 0.8	15	10	19	16	54	33	RB0806	M12 x 1.5	25	62	46	56	38	24	3	3.5	3	6	M5 x 0.8	10	5
20	13	M5 x 0.8	5.6	9.5	5.5	Rc 1/8	12.5	10.5	25	18	70	37	RB1007	M14 x 1.5	30	81	54	72	44	28	3	3.5	3	6	M6 x 1.0	12	17
25	15	M6 x 1.0	5.6	9.5	5.5	Rc 1/8	12.5	13.5	28.5	26	78	37	RB1007	M14 x 1.5	38	91	64	82	50	34	4	4.5	3	6	M6 x 1.0	12	17
32	20	M8 x 1.25	6.6	11	7.5	Rc 1/8	7	15	34	30	96	55	RB1412	M20 x 1.5	44	110	78	98	63	42	4	4.5	3	6	M8 x 1.25	16	21
40	20	M8 x 1.25	6.6	11	7.5	Rc 1/8	13	18	38	30	104	55	RB1412	M20 x 1.5	44	118	86	106	72	50	4	4.5	3	6	M8 x 1.25	16	22
50	22	M10 x 1.5	8.6	14	9	Rc 1/4	9	21.5	47	40	130	57	RB2015	M27 x 1.5	60	146	110	130	92	66	5	6	4	8	M10 x 1.5	20	24
63	22	M10 x 1.5	8.6	14	9	Rc 1/4	14	28	55	50	130	57	RB2015	M27 x 1.5	70	158	124	142	110	80	5	6	4	8	M10 x 1.5	20	24

(mm)

VIGP12 to	25/WΔ	WR	Dim	ansi	าทร
VIGE IZ IU	ZJI VVA.		UIII	ıcıısı	פווכ

			WA			WB						
Bore size (mm)	30 stroke or less	Over 30 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	30 stroke or less	to	Over 100 stroke to 200 stroke	to	300 stroke		
12	20	40	110	200	-	15	25	60	105	-		
16	24	44	110	200	-	17	27	60	105	-		
20	24	44	120	200	300	29	39	77	117	167		
25	24	44	120	200	300	29	39	77	117	167		

MGP32 to 63/WA, WB Dimensions	
-------------------------------	--

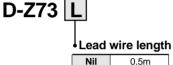

			WA			WB							
Bore size (mm)	25 stroke or less	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	25 stroke or less	Over 25 stroke to 100 stroke	to	Over 200 stroke to 300 stroke	Over 300 stroke			
32	24	48	124	200	300	33	45	83	121	171			
40	24	48	124	200	300	34	46	84	122	172			
50	24	48	124	200	300	36	48	86	124	174			
63	28	52	128	200	300	38	50	88	124	174			

(mm)

Contact SMC for detailed specifications and lead times, and for applications of cylinders with air cushion, heavy duty guide rod type, and lock type.

Dimensions/Ø80, Ø100

																									((mm)
															WA					WB						
Bore size (mm)	ОВ	PA	РВ	PW	Q	R	RA	S	Т	U	VA	VB	25 stroke	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	25 stroke	Over 25 stroke to 100 stroke	Over 100 stroke to 200 stroke	Over 200 stroke to 300 stroke	Over 300 stroke	Х	YY	YL	Z
80	17.5	14.5	25.5	74	52	174	77	75	198	156	180	140	28	52	128	200	300	42	54	92	128		100	M12 x 1.75	24	28
100	20	17.5	32.5	89	64	210	74	90	236	188	210	166	48	72	148	220	320	35	47	85	121	171	124	M14 x 2.0	28	11

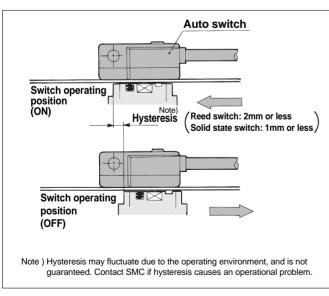

Series MGP **Auto Switch Common Specifications**

Auto Switch Common Specifications

Туре	Reed switch	Solid state switch				
Leakage current	None	3 wire: 100μA or less, 2 wire: 0.8mA or less				
Operating time	1.2ms	1ms or less				
Impact resistance	300m/s²	1000m/s²				
Insulation resistance	50MΩ or more at 500VDC (I	petween lead wire and case)				
Withstand voltage	1500VAC for 1 min. (between lead wire and case)	1000VAC for 1 min. (between lead wire and case)				
Ambient temperature	−10 to 60°C					
Enclosure	IEC529 standard IP67, JISC0920 watertight construction					

Lead Wire Length

Lead wire length indication (Example)


Nil	0.5m
L	3m
Z	5m

Note 1) Lead wire length Z: 5m applicable auto switch Reed: D-Z73

Solid state: All types are produced upon receipt of order (standard availability).

Auto Switch Hysteresis

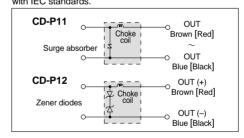
Hysteresis is the distance from the position at which piston movement activates an auto switch to the position at which reverse movement turns the switch OFF. This hysteresis is included in part of the operating range (one side)

Contact Protection Boxes/CD-P11, CD-P12

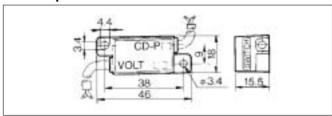
D-Z7 and D-Z8 type switches do not have internal contact protection circuits

- 1. The operating load is an induction load.
- 2. The length of wiring to the load is 5m or more.
- 3. The load voltage is 100VAC.

A contact protection box should be used in any of the above situations.


Contact protection box specifications

Part no.	CD-	CD-P12	
Load voltage	100VAC or less	200VAC	24VDC
Maximum load current	25mA	12.5mA	50mA

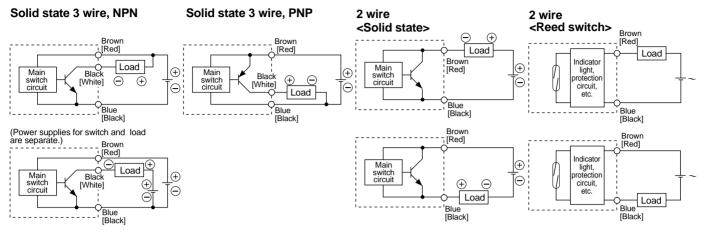

* Lead wire length .. Switch connection side 0.5m Load connection side 0.5m

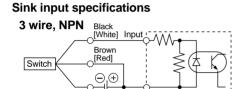
Contact protection box internal circuits Lead wire colors inside [] are those prior to conformity with IEC standards.

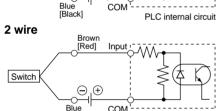
Contact protection box dimensions

Contact Protection Box Connection

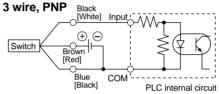
To connect a switch unit to a contact protection box, connect the lead wire from the side of the contact protection box marked SWITCH to the lead wire coming out of the switch unit.

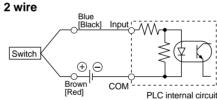

Furthermore, the switch unit should be kept as close as possible to the contact protection box, with a lead wire length of no more than 1 meter


Series MGP **Auto Switch Connections** and Examples

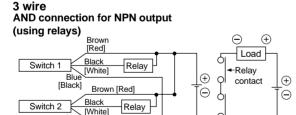

Basic Wiring

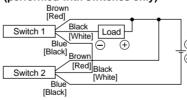
Lead wire colours inside [] are those prior to conformity with IEC standards.



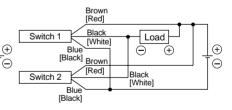

Examples of Connection to PLC

Source input specifications

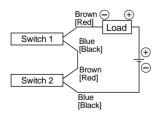



Connect according to the applicable PLC input specifications, as the connection method will vary depending on the PLC input specifica-

Connection Examples for AND (Series) and OR (Parallel)


PLC internal circuit

AND connection for NPN output (performed with switches only)

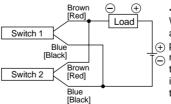


OR connection for NPN output

The indicator lights will light up when both switches are turned ON.

2 wire with 2 switch AND connection

[Black]


When two switches are connected in series, a load may malfunction because the load voltage will decline when in the ON state. The indicator lights will light up if both of the switches are in the ON state.

Load voltage at ON =
$$\frac{\text{Power supply}}{\text{voltage}}$$
 - $\frac{\text{Internal}}{\text{voltage}}$ x 2 pcs.
= 24V - 4V x 2 pcs.
= 16 V

Example: Power supply is 24VDC

Internal voltage drop in switch is 4V

2 wire with 2 switch OR connection

<Solid state> When two switches are connected in + parallel, malfunction may occur because the load voltage will increase when in the OFF state.

Load voltage at OFF = Leakage x 2 pcs. x Load impedance = 1mA x 2 pcs. x $3k\Omega$ =6V

Example: Load impedance is $3k\Omega$

Leakage current from switch is 1mA

<Reed switch>

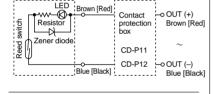
Because there is no current leakage, the load voltage will not increase when turned OFF. However, depending on the number of switches in the ON state, the indicator lights may sometimes dim or not light up, because of dispersion and reduction of the current flowing to the swit-

Reed Switches/Direct Mount Type D-Z73/Z76/Z80

Auto Switch Specifications

With indicator light

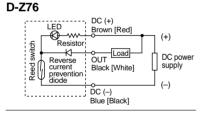
Auto switch part no.	D-7	Z73	D-Z76		
Electrical entry direction					
Applicable load	Relay,	PLC	IC circuit		
Load voltage	24VDC	100VAC	4 to 8VDC		
Maximum load current or current range	5 to 40mA	20mA			
Contact protection circuit		None			
Internal voltage drop	2.4V or less (to 20mA	0.8V or less			
Indicator light	Red LED lights up when ON				

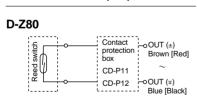

Without indicator light

9									
Auto switch part no.		D-Z80							
Electrical entry direction	In-line								
Applicable load	Relay, PLC, IC circuit								
Load voltage	24V AC or less	48V _{DC} ^{AC}	100V _{DC}						
Maximum load current	50mA	40mA	20mA						
Contact protection circuit	None								
Internal resistance	1Ω or less (including lead wire length of 3m)								

- Oil resistant heavy duty vinyl cord, ø3.4,
 0.2mm², 2 wire (Brown, Blue [Red, Black]), 3 wire (Brown, Black, Blue [Red, White, Black]),
 0.5m (D-Z73 only ø2.7, 0.18mm², 2 wire)

Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

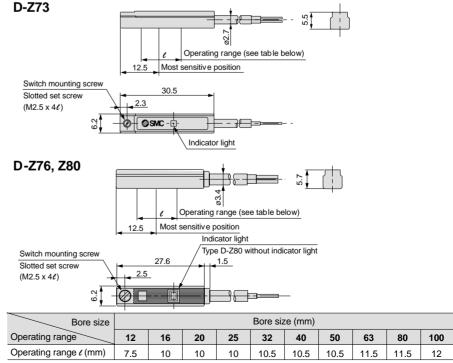

LED Brown [Red]



Internal circuits

D-Z73

Lead wire colours inside [] are those prior to conformity with IEC standards.


- Note) 1. The load is an induction load
 - 2. The lead wire length to the load is 5m or more.
 - 3. The load voltage is 100VAC.

Use a contact protection box in any of the above situations, as the life of the contacts may otherwise be reduced. (Refer to page 57 for detailed specifications of the contact protection boxes.)

Weights

		Unit: g
Model	Lead wire length 0.5m	Lead wire length 3m
D-Z73	9	49
D-Z76	10	55
D-Z80	9	49

Dimensions

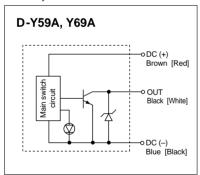
Solid State Switches/Direct Mount Type D-Y59⁶/D-Y69⁶/D-Y7P(V)

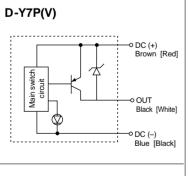
Auto Switch Specifications

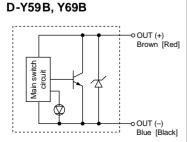
D-Y5, D-Y6, D-Y7P, D-Y7PV (with indicator light)

Auto switch part no.	D-Y59A	D-Y69A	D-Y7P	D-Y7PV	D-Y59B	D-Y69B	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3 v	vire		2 \	wire	
Output type	NF	PN	Р	NP		_	
Applicable load		IC circuit, F	24VDC F	Relay, PLC			
Power supply voltage	5,	12, 24VDC	(4.5 to 28VD	C)	_		
Current consumption		10mA	or less		_		
Load voltage	28VDC	or less		_	24VDC (10 to 28VDC)		
Load current	40mA	or less	80mA	or less	5 to 40mA		
Internal voltage drop	1.5V or less (0.8V or less at 10mA load current) 0.8V or less		4V or less				
Leakage current		100μA or les	0.8mA or le	ss at 24VDC			
Indicator light	Red LED lights up when ON						

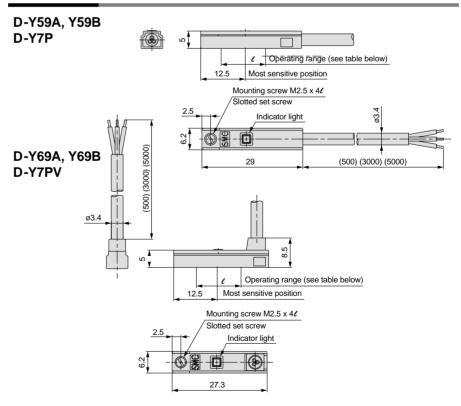
[•] Lead wire — Oil resistant, flexible heavy duty vinyl cord, Ø3.4, 0.15mm², 2 wire (Brown, Blue [Red, Black]), 3 wire (Brown, Black, Blue [Red, White, Black]), 0.5m


Note) Refer to page 57 for auto switch common specifications and lead wire lengths

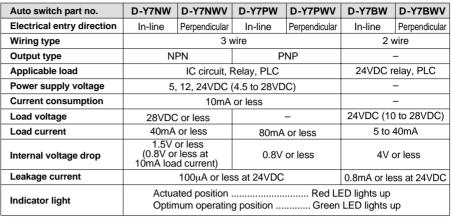

Weights


Unit: g Lead wire length Model 0.5 m 3m D-Y59A, Y69A, Y7P D-Y59B, Y69B, Y7PV

Internal circuits


Lead wire colours inside [] are those prior to conformity with IEC standards.

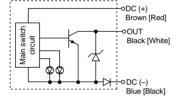
Dimensions


Operating range 12 16 20 25 32 40 50 63 80 100 Operating range \(\ell \) (mm) 5.5 7.5 7.5 7 6.5 6 7 8 9.5 10	Bore size					Bore siz	ze (mm)				
Operating range ℓ (mm) 5.5 7.5 7.5 7 6.5 6 7 8 9.5 10	Operating range	12	16	20	25	32	40	50	63	80	100
	Operating range ℓ (mm)	5.5	7.5	7.5	7	6.5	6	7	8	9.5	10

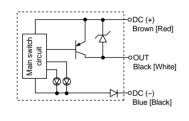
2 Colour Indication Solid State Switches **Direct Mount Type** D-Y7NW(V)/Y7PW(V)/D-Y7BW(V)

Auto Switch Specifications

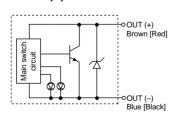
D-Y7 W, D-Y7 WV (with indicator light)

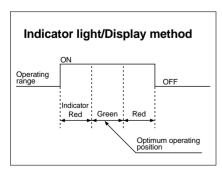


• Lead wire — Oil resistant, flexible heavy duty vinyl cord, ø3.4, 0.15mm², 3 wire (Brown, Black, Blue [Red, White, Black]), 2 wire (Brown, Blue [Red, Black]), 0.5m Note) Refer to page 57 for auto switch common specifications and lead wire lengths


Internal circuits

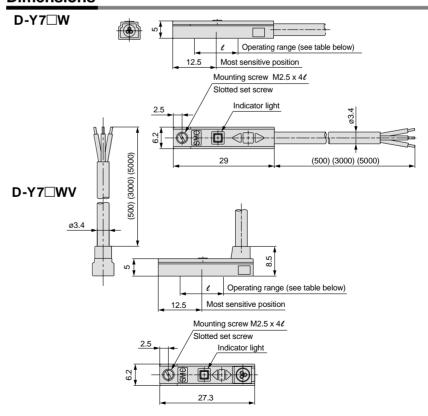
Lead wire colours inside [] are those prior to conformity with IEC standards.


D-Y7NW(V)/3 wire NPN output



D-Y7PW(V)/3 wire PNP output

D-Y7BW(V)/2 wire



Weights

		Orint. 9			
	Lead wire length				
Model	0.5 m	3 m			
D-Y7N, Y7P	10	53			
D-Y7B	9	50			

Dimensions

Bore size					Bore siz	e (mm)				
Operating range	12	16	20	25	32	40	50	63	80	100
Operating range ℓ (mm)	5.5	7.5	7.5	7	6.5	6	7	8	9.5	10

Water Resistant 2 Colour Indication Solid State Switches/Direct Mount Type D-Y7BAL

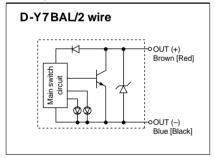
Water (coolant) resistant type

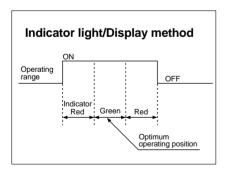
Auto Switch Specifications

D-Y7BAL (with indicator light)

Auto switch model no.	D-Y7BAL			
Electrical entry direction	In-line In-line			
Wiring type	2 wire			
Applicable load	24VDC relay, PLC			
Load voltage	24VDC (10 to 28VDC)			
Load current	5 to 40mA			
Internal voltage drop	4V or less			
Leakage current	1mA or less at 24VDC			
Indicator light	Actuated position Red LED lights up Optimum operating position Green LED lights up			

[•] Lead wire — Oil resistant, flexible heavy duty vinyl cord, Ø3.4, 0.15mm², 2 wire (Brown, Blue [Red, Black]), 3m Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

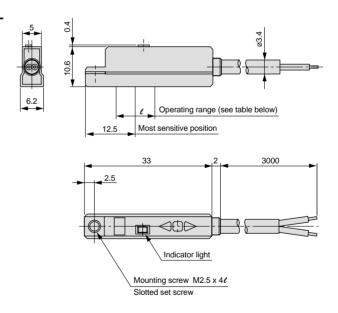

Operating Precautions



1. Contact SMC if a solution other than water is to be used.

Internal circuits

Lead wire colours inside [] are those prior to conformity with IEC standards.


Weights

	Unit: g
Model	Lead wire length
	3m
D-Y7BAL	51

11-14- 6

Dimensions

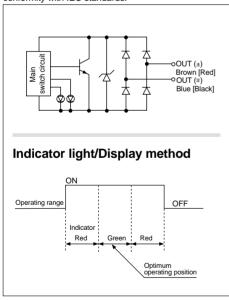
D-Y7BAL

Bore size					Bore siz	ze (mm)				
Operating range	12	16	20	25	32	40	50	63	80	100
Operating range ℓ (mm)	3.5	5	5	5	6	6	6	6	6	6.5

Magnetic Field Resistant 2 Colour Indication Solid State Switches/Rail Mount Type D-P5DWL

Grommet

Operational in an environment with magnetic field disturbance (AC magnetic field).


⚠ Caution

Handling Precautions

For use with single-phase AC welder. Cannot be used with DC inverter welder (includes rectifying type), arc welder, or condenser type welder.

Auto Switch Internal Circuit

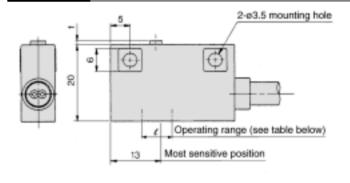
Lead wire colours inside [] are those prior to conformity with IEC standards.

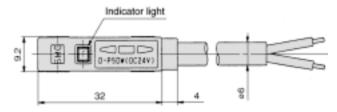
Auto Switch Specifications

D-P5DW (with indicator light)						
Auto switch part no.	D-P5DWL					
Wiring type	2 wire (non-polar)					
Applicable load	24VDC relay, PLC					
Load voltage	24VDC (20 to 28VDC)					
Load current	6 to 40mA or less					
Internal voltage drop	5V or less					
Leakage current	1mA or less at 24VDC					
Operating time	40ms or less					
Indicator light	Actuated positionRed LED lights up Optimum operating position Green LED lights up					

Lead wire — Oil resistant, heavy duty vinyl cord, ø6, 0.5mm², 2 wire (Brown, Blue [Red, Black]), 3m
 Note) Refer to page 57 for auto switch common specifications and lead wire lengths.

Magnetic Field Resistance


When the AC welding current is 16000A or less, the operational distance between the welding conductor (welding gun or cable) and the cylinder or auto switch is 0mm.


Consult SMC when exceeding 16000A.

Auto Switch Weights

		Unit: g			
Model	Lead wire length				
	3m	5m			
D DEDWI	150	240			

Dimensions

Bore size		Bor	e size (m	m)	
Operating range	40	50	63	80	100
Operating range ℓ (mm)	4.1	3.9	4.8	4.2	4.2

Note) This is a standard including hysteresis, and is not guaranteed. There may be large variations depending on the surrounding environment (variations on the order of ±30%).

Series MGP Safety Instructions

These safety instructions are intended to prevent a hazardous situation and/or equipment damage. These instructions indicate the level of potential hazard by a label of "Caution", "Warning" or "Danger". To ensure safety, be sure to observe ISO 4414 Note 1), JIS B 8370 Note 2) and other safety practices.

Caution: Operator error could result in injury or equipment damage.

Warning: Operator error could result in serious injury or loss of life.

⚠ Danger : In extreme conditions, there is a possible result of serious injury or loss of life.

Note 1) ISO 4414: Pneumatic fluid power – Recommendations for the application of equipment to transmission and control systems

Note 2) JIS B 8370: General Rules for Pneumatic Equipment

1. The compatibility of pneumatic equipment is the responsibility of the person who designs the pneumatic system or decides its specifications.

Since the products specified here are used in various operating conditions, their compatibility for the specific pneumatic system must be based on specifications or after analysis and/or tests to meet your specific requirements.

2. Only trained personnel should operate pneumatically operated machinery and equipment.

Compressed air can be dangerous if handled incorrectly. Assembly, handling or repair of pneumatic systems should be performed by trained and experienced operators.

- 3. Do not service machinery/equipment or attempt to remove components until safety is confirmed.
- 1. Inspection and maintenance of machinery/equipment should only be performed after confirmation of safe locked-out control positions.
- 2. When equipment is to be removed, confirm the safety process as mentioned above. Cut the supply pressure for this equipment and exhaust all residual compressed air in the system.
- 3. Before machinery/equipment is restarted, take measures to prevent shooting-out of cylinder piston rod, etc. (Bleed air into the system gradually to create back pressure.)
- 4. Contact SMC if the product is to be used in any of the following conditions:
- 1. Conditions and environments beyond the given specifications, or if product is used outdoors.
- 2. Installation on equipment in conjunction with atomic energy, railway, air navigation, vehicles, medical equipment, food and beverages, recreation equipment, emergency stop circuits, press applications, or safety equipment.
- 3. An application which has the possibility of having negative effects on people, property, or animals, requiring special safety analysis.

∆Warning

 There is a danger of sudden action by air cylinders if sliding parts of machinery are twisted, etc., and changes in forces occur.

In such cases, human injury may occur; e.g., by catching hands or feet in the machinery, or damage to the machinery itself may occur. Therefore, the machine should be designed to avoid such dangers.

2. A protective cover is recommended to minimize the risk of personal injury.

If a stationary object and moving parts of a cylinder are in close proximity, personal injury may occur. Design the structure to avoid contact with the human body.

3. Securely tighten all stationary parts and connected parts so that they will not become loose.

Especially when a cylinder operates with high frequency or is installed where there is a lot of vibration, ensure that all parts remain secure.

4. A deceleration circuit or shock absorber, etc., may be required.

When a driven object is operated at high speed or the load is heavy, a cylinder's cushion will not be sufficient to absorb the impact. Install a deceleration circuit to reduce the speed before cushioning, or install an external shock absorber to relieve the impact. In this case, the rigidity of the machinery should also be examined.

5. Consider a possible drop in circuit pressure due to a power outage, etc.

When a cylinder is used in a clamping mechanism, there is a danger of work pieces dropping if there is a decrease in clamping force due to a drop in circuit pressure caused by a power outage, etc. Therefore, safety equipment should be installed to prevent damage to machinery and human injury. Suspension mechanisms and lifting devices also require consideration for drop prevention.

6. Consider a possible loss of power source.

Measures should be taken to protect against human injury and equipment damage in the event that there is a loss of power to equipment controlled by air pressure, electricity or hydraulics, etc.

7. Design circuitry to prevent sudden lurching of driven objects.

When a cylinder is driven by an exhaust center type directional control valve or when starting up after residual pressure is exhausted from the circuit, etc., the piston and its driven object will lurch at high speed if pressure is applied to one side of the cylinder because of the absence of air pressure inside the cylinder. Therefore, equipment should be selected and circuits designed to prevent sudden lurching, because there is a danger of human injury and/or damage to equipment when this occurs.

8. Consider emergency stops.

Design so that human injury and/or damage to machinery and equipment will not be caused when machinery is stopped by a safety device under abnormal conditions, a power outage or a manual emergency stop.

Consider the action when operation is restarted after an emergency stop or abnormal stop.

Design the machinery so that human injury or equipment damage will not occur upon restart of operation. When the cylinder has to be reset at the starting position, install safe manual control equipment.

Selection

Standard Type MGP

With Air Cushion

With End Lock

Heavy Duty Guide Rod Type

Specifications

Order Made

Auto Switches

Precautions

△Warning

1. Confirm the specifications.

The products advertised in this catalog are designed according to use in industrial compressed air systems. If the products are used in conditions where pressure, temperature, etc., are out of specification, damage and/or malfunction may be caused. Do not use in these conditions. (Refer to specifications.)

Consult SMC if you use a fluid other than compressed air.

2. Intermediate stops.

When intermediate stopping of a cylinder piston is performed with a 3 position closed center type directional control valve, it is difficult to achieve stopping positions as accurate and minute as with hydraulic pressure due to the compressibility of air.

Furthermore, since valves and cylinders, etc., are not guaranteed for zero air leakage, it may not be possible to hold a stopped position for an extended period of time. Contact SMC in case it is necessary to hold a stopped position for an extended period.

⚠Caution

1. Operate within the limits of the maximum usable stroke.

The piston rod will be damaged when operated with the stroke exceeding the maximum stroke range. Refer to the air cylinder selection procedures regarding the maximum usable stroke.

2. Operate the piston within a range such that collision damage will not occur at the end of the stroke.

Operate within a range such that damage will not occur when the piston having inertial force stops by striking the cover at the stroke end. Refer to the cylinder selection procedures for the range within which damage will not occur.

- 3. Use a speed controller to adjust the cylinder drive speed, gradually increasing from a low speed to the desired speed setting.
- 4. Provide an intermediate support for a cylinder with a long stroke.

If the cylinder has a long stroke, provide an intermediate support to prevent the rod from sagging and the tube from flexing, as well as to prevent damage to the rod due to vibrations or external loads.

Mounting

△Caution

 Be sure to connect the rod and the load so that their axial center and movement directions match.

If they do not match, stress could be applied to the rod and the tube, causing the inner surface of the tube, the bushing, the rod surface, and the seals to wear and to become damaged.

2. When an external guide is used, connect the external slider and the load in such a way that there is no interference at any point within the stroke.

Series MGP **Actuator Precautions 2**

Be sure to read before handling.

Mounting

^Caution

3. Do not scratch or gouge the sliding parts of the cylinder tube or piston rod, etc., by striking or grasping them with other objects.

Cylinder bores are manufactured to precise tolerances, so that even a slight deformation may cause faulty operation. Also, scratches or gouges, etc., in the piston rod may lead to damaged seals and cause air leakage

4. Prevent the rotating parts from seizing.

Apply grease to rotating parts (such as the pin) to prevent them from

5. Do not use until you can verify that equipment can operate properly.

Following mounting, maintenance or conversions, verify correct mounting by suitable function and leakage tests after compressed air and power are connected.

6. Instruction manual

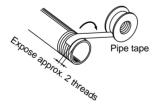
The product should be mounted and operated after thoroughly reading the manual and understanding its contents.

Keep the instruction manual where it can be referred to as need-

Piping

⚠Caution

1. Preparation before piping


Before piping is connected, it should be thoroughly blown out with air (flushing) or washed to remove chips, cutting oil and other debris from inside the pipe.

2. Wrapping of pipe tape

When screwing together pipes and fittings, etc., be certain that chips from the pipe threads and sealing material do not get inside

Also, when pipe tape is used, leave 1.5 to 2 thread ridges exposed at the end of the threads.

Wrapping direction

Lubrication

⚠Caution

1. Lubrication of lube type cylinder

Install a lubricator in the circuit, and use class 1 turbine oil (with no additives) ISO VG32. Do not use machine oil or spindle oil.

2. Lubrication of non-lube type cylinder

The cylinder is lubricated at the factory and can be used without any further lubrication.

However, in the event that it will be lubricated, use class 1 turbine oil (with no additives) ISO VG32.

Stopping lubrication later may lead to malfunction due to the loss of the original lubricant. Therefore, lubrication must be continued once it has been started.

Air Supply

△Warning

1. Use clean air.

Do not use compressed air that includes chemicals, synthetic oils containing organic solvents, salt or corrosive gases, etc., as it can cause damage or malfunction.

△\Caution

1. Install air filters.

Install air filters at the upstream side of valves. The filtration degree should be 5µm or finer.

2. Install an air dryer, after-cooler or water separator, etc.

Air that includes excessive drainage may cause malfunction of valves and other pneumatic equipment. To prevent this, install an air dryer, after-cooler or water separator, etc.

3. Use the product within the specified range of fluid and ambient temperature.

Take measures to prevent freezing, since moisture in circuits will be frozen under 5°C, and this may cause damage to seals and lead to malfunction.

Refer to SMC's "Air Cleaning Equipment" catalog for further details on compressed air quality.

Operating Environment

△Warning

1. Do not use in environments where there is a danger of corrosion.

Refer to the construction drawings regarding cylinder materials.

2. In dusty locations or where water, oil, etc., splash on the equipment, install a protective cover over the rod.

Use cylinders with a heavy duty scraper (-XC4) in dusty areas. Use water resistant cylinders in areas where liquids are splashed or sprayed

3. When using auto switches, do not operate in an environment with strong magnetic fields.

Maintenance

∆Warning

1. Perform maintenance according to the procedure indicated in the instruction manual.

If handled improperly, malfunction and damage of machinery or equipment may occur.

2. Removal of equipment, and supply/exhaust of compressed air.

When machinery is removed, first check measures to prevent dropping of driven objects and run-away of equipment, etc. Then cut off the supply pressure and electric power, and exhaust all compressed air from the system.

When machinery is restarted, proceed with caution after confirming measures to prevent cylinder lurching.

∠!\Caution

1. Drain flushing

Remove drainage from air filters regularly.

Series MGP **Auto Switch Precautions 1**

Be sure to read before handling.

Design and Selection

△Warning

1. Confirm the specifications.

Read the specifications carefully and use this product appropriately. The product may be damaged or malfunction if it is used outside the range of specifications for current load, voltage, tem-

2. Take precautions when multiple cylinders are used close together.

When multiple auto switch cylinders are used in close proximity, magnetic field interference may cause the switches to malfunction. Maintain a minimum cylinder separation of 40mm. (When the allowable separation is indicated for each cylinder series, use the specified value.)

3. Pay attention to the length of time that a switch is ON at an intermediate stroke position.

When an auto switch is placed at an intermediate position of the stroke and a load is driven at the time the piston passes, the auto switch will operate, but if the speed is too great the operating time will be shortened and the load may not operate properly. The maximum detectable piston speed is:

$$V(mm/s) = \frac{\text{Auto switch operating range (mm)}}{\text{Load operation time (ms)}} \times 1000$$

4. Keep wiring as short as possible.

<Reed switches>

As the length of the wiring to a load gets longer, the rush current at switching ON becomes greater, and this may shorten the product's life. (The switch will stay ON all the time.)

- 1) For an auto switch without a contact protection circuit, use a contact protection box when the wire length is 5m or longer.
- 2) Even if an auto switch has a built-in contact protection circuit. when the wiring is more than 30m long, it is not able to adequately absorb the rush current and its life maybe reduced. It is necessary to connect a contact protection box in order to extend its life. Contact SMC in this case.

<Solid state switches>

3) Although wire length should not affect switch function, use a wire 100m or shorter.

5. Pay attention to the internal voltage drop of switches.

<Reed switches>

- 1) Switches with an indicator light (Except D-Z76)
- If auto switches are connected in series as shown below, take note that there will be a large voltage drop because of internal resistance in the light emitting diodes. (Refer to internal voltage drop in the auto switch specifications.)

[The voltage drop will be "n" times larger when "n" auto switches are connected.]

Even though an auto switch operates normally, the load may not

• In the same way, when operating below a specified voltage, although an auto switch may operate normally, the load may not operate. Therefore, the formula below should be satisfied after confirming the minimum operating voltage of the load.

Supply voltage - Internal voltage of switch > Minimum operating voltage of load

2) If the internal resistance of a light emitting diode causes a problem, select a switch without an indicator light (Model D-Z80).

<Solid state switches>

3) Generally, the internal voltage drop will be greater with a 2 wire solid state auto switch than with a reed switch. Take the same precautions as in 1).

Also, note that a 12VDC relay is not applicable.

6. Pay attention to leakage current.

<Solid state switches>

With a 2 wire solid state auto switch, current (leakage current) flows to the load to operate the internal circuit even when in the OFF state.

Operating current of load (OFF condition) > Leakage current

If the criteria given in the above formula are not met, it will not reset correctly (stays ON). Use a 3 wire switch if this specification will not be satisfied.

Moreover, leakage current flow to the load will be "n" times larger when "n" auto switches are connected in parallel.

7. Do not use a load that generates surge voltage.

<Reed switches>

If driving a load such as a relay that generates a surge voltage, use a switch with a built-in contact protection circuit or use a contact protection box.

<Solid state switches>

Although a zener diode for surge protection is connected at the output side of a solid state auto switch, damage may still occur if the surge is applied repeatedly. When a load, such as a relay or solenoid which generates surge is directly driven, use a type of switch with a built-in surge absorbing element.

8. Cautions for use in an interlock circuit

When an auto switch is used for an interlock signal requiring high reliability, devise a double interlock system to avoid trouble by providing a mechanical protection function, or by also using another switch (sensor) together with the auto switch. Also perform periodic maintenance and confirm proper operation.

9. Ensure sufficient clearance for maintenance activities.

When designing an application, be sure to allow sufficient clearance for maintenance and inspections.

Series MGP **Auto Switch Precautions 2**

Be sure to read before handling.

Mounting and Adjustment

△Warning

1. Do not drop or bump.

Do not drop, bump or apply excessive impacts (300m/s² or more for reed switches and 1000m/s² or more for solid state switches)

Although the body of the switch may not be damaged, the inside of the switch could be damaged and cause a malfunction.

2. Do not carry a cylinder by the auto switch lead wires.

Never carry a cylinder by its lead wires. This may not only cause broken lead wires, but it may cause internal elements of the switch to be damaged by the stress.

3. Mount switches using the proper fastening

When a switch is tightened beyond the range of fastening torque, the mounting screws, mounting bracket or switch may be damaged. On the other hand, tightening below the range of fastening torque may allow the switch to slip out of position.

4. Mount a switch at the center of the operating

Adjust the mounting position of an auto switch so that the piston stops at the center of the operating range (the range in which a switch is ON).

(The mounting position shown in the catalog indicates the optimum position at stroke end.) If mounted at the end of the operating range (around the borderline of ON and OFF), operation will be unstable.

Wiring

△Warning

1. Avoid repeatedly bending or stretching lead wires.

Broken lead wires will result from wiring patterns which repeatedly apply bending stress or stretching force to the lead wires.

2. Be sure to connect the load before power is applied.

If the power is turned ON when an auto switch is not connected to a load, the switch will be instantly damaged because of excess

3. Confirm proper insulation of wiring.

Be certain that there is no faulty wiring insulation (contact with other circuits, ground fault, improper insulation between terminals, etc.). Damage may occur due to excess current flow into a switch.

4. Do not wire with power lines or high voltage lines.

Wire separately from power lines or high voltage lines, avoiding parallel wiring or wiring in the same conduit with these lines. Control circuits, including auto switches, may malfunction due to noise from these other lines.

Wiring

△Warning

5. Do not allow short circuit of loads.

<Reed switches>

If the power is turned ON with a load in a short circuited condition, the switch will be instantly damaged because of excess current flow into the switch.

<Solid state switches>

All models of PNP output type switches do not have built-in short circuit protection circuits. If loads are short circuited, the switches will be instantly damaged as in the case of reed switches.

Take special care to avoid reverse wiring with the brown [red] power supply line and the black [white] output line on 3 wire type switches.

Avoid incorrect wiring.

<Reed switches>

A 24VDC switch with indicator light has polarity. The brown [red) lead wire or terminal no. 1 is (+), and the blue [black] lead wire or terminal no. 2 is (-).

1) If connections are reversed, a switch will operate, however, the light emitting diode will not light up.

Also note that a current greater than that specified will damage a light emitting diode and it will no longer operate.

Applicable models: D-Z73

<Solid state switches>

- 1) If connections are reversed on a 2 wire type switch, the switch will not be damaged if protected by a protection circuit, but the switch will always stay in an ON state. However, it is still necessary to avoid reversed connections, since the switch could be damaged by a load short circuit in this condition.
- 2) If connections are reversed (power supply line + and power supply line -) on a 3 wire type switch, the switch will be protected by a protection circuit. However, if the power supply line (+) is connected to the blue [black] wire and the power supply line (-) is connected to the black [white] wire, the switch will be damaged.

* Lead wire color changes

Lead wire colors of SMC switches have been changed in order to meet NECA Standard 0402 for production beginning September, 1996 and thereafter. Please refer to the tables provided.

Special care should be taken regarding wire polarity during the time that the old colors still coexist with the new colors.

2 wire							
	Old	New					
Output (+)	Red	Brown					
Output (-)	Black	Blue					

Solid state with diagnostic output

	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black
Diagnostic Output	Yellow	Orange

3 WITE					
	Old	New			
Power supply	Red	Brown			
GND	Black	Blue			
Output	White	Black			

Solid state with latch type diagnostic output

	Old	New
Power supply	Red	Brown
GND	Black	Blue
Output	White	Black
Latch type diagnostic output	Yellow	Orange

Note) Lead wire colours inside [] are those prior to conformity with NECA standards.

Series MGP **Auto Switch Precautions 3**

Be sure to read before handling.

Operating Environment

△Warning

1. Never use in an atmosphere of explosive

The construction of auto switches is not intended to prevent explosion. Never use in an atmosphere with an explosive gas since this may cause a serious explosion.

2. Do not use in an area where a magnetic field is generated.

Auto switches will malfunction or magnets inside cylinders will become demagnetized. (Consult SMC regarding the availability of a magnetic field resistant auto switch.)

3. Do not use in an environment where the auto switch will be continually exposed to water.

Do not use switches in applications where continually exposed to water splash or spray. Poor insulation or swelling of the potting resin inside switches may cause malfunction.

4. Do not use in an environment with oil or chemicals.

Consult SMC if auto switches will be used in an environment with coolant, cleaning solvent, various oils or chemicals. If auto switches are used under these conditions for even a short time, they may be adversely affected by improper insulation, malfunction due to swelling of the potting resin, or hardening of the lead wires.

5. Do not use in an environment with temperature cycles.

Consult SMC if switches are used where there are temperature cycles other than normal temperature changes, as they may be adversely affected internally.

6. Do not use in an environment where there is excessive impact shock.

<Reed switches>

When excessive impact (300m/s² or more) is applied to a reed switch during operation, the contact point will malfunction and generate or cut off a signal momentarily (1ms or less). Consult SMC regarding the need to use a solid state switch depending upon the environment.

7. Do not use in an area where surges are generated.

<Solid state switches>

When there are units (solenoid type lifter, high frequency induction furnace, motor, etc.) which generate a large amount of surge in the area around cylinders with solid state auto switches, this may cause deterioration or damage to the switch. Avoid sources of surge generation and crossed lines.

8. Avoid accumulation of iron waste or close contact with magnetic substances.

When a large amount of ferrous waste such as machining chips or spatter is accumulated, or a magnetic substance (something attracted by a magnet) is brought into close proximity with an auto switch cylinder, it may cause the auto switch to malfunction due to a loss of the magnetic force inside the cylinder.

Maintenance

△Warning

- 1. Perform the following maintenance periodically in order to prevent possible danger due to unexpected auto switch malfunction.
- 1) Securely tighten switch mounting screws.
 - If screws become loose or the mounting position is dislocated, retighten them after readjusting the mounting position.
- Confirm that there is no damage to lead wires.
 - To prevent faulty insulation, replace switches or repair lead wires, etc., if damage is discovered.
- 3) Confirm the lighting of the green light on the 2 colour indicator type switch.

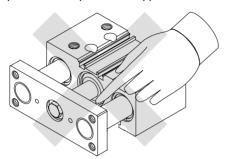
Confirm that the green LED is on when stopped at the established position. If the red LED is on, the mounting position is not appropriate. Readjust the mounting position until the green LED lights

Other

△Warning

1. Consult SMC concerning water resistance, elasticity of lead wires, and usage at welding sites, etc.

Series MGP Specific Product Precautions


Be sure to read before handling. Refer to pages 64 through 69 for safety instructions, actuator precautions and auto switch precautions.

Mounting

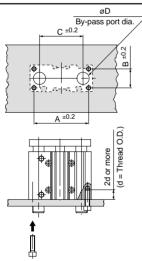
⚠Warning

1. Do not put hands or fingers, etc. between the plate and body.

Be careful that hands or fingers, etc., do not get caught in the space between the cylinder body and the plate when air pressure is applied.

⚠ Caution

1. Do not scratch or nick the sliding parts of the piston rod and guide rods.


Damage to seals can cause air leaks or malfunction, etc.

2. Bottom of cylinder.

The guide rods protrude from the bottom of the cylinder at the end of the retracting stroke, and therefore, in cases where the cylinder is to be bottom mounted, it is necessary to provide by-pass ports in the mounting surface for the guide rods, as well as holes for the hexagon socket head screws which are used for mounting.


Moreover, in applications where impact occurs from a stopper, etc., the mounting bolts should be inserted to a depth of 2d or more (1.5d or more for MGPS).

Series MGP

Bore size	Α	А В		D (mm)		Hexagon socket
(mm)	(mm)	(mm)	(mm)	MGPM	MGPL	mounting bolt
12	50	18	41	10	8	M4 x 0.7
16	56	22	46	12	10	M5 x 0.8
20	72	24	54	14	12	M5 x 0.8
25	82	30	64	18	15	M6 x 1.0
32	98	34	78	22	18	M8 x 1.25
40	106	40	86	22	18	M8 x 1.25
50	130	46	110	27	22	M10 x 1.5
63	142	58	124	27	22	M10 x 1.5
80	180	54	156	33	28	M12 x 1.75
100	210	62	188	39	33	M14 x 2.0

Series MGPS

Bore size (mm)		B (mm)	C (mm)		Hexagon socke mounting bolt
50	140	50	116	32	M12 x 1.75
80	214	66	170	47	M16 x 2

Cushion

When equipped with air cushion

∕!\Caution

1. Keep the adjustment range of the cushion valve within 3 rotations of the completely closed position.

When adjusting the cushion valve, use the following screw driver or hexagon wrenches. Keep the adjustment range of the cushion valve within 3 rotations of the completely closed position. Air leakage will occur if operated after opening by 4 rotations or more. Furthermore, a stopper mechanism is provided for the cushion valve, and it should not be forced open beyond that position.

Bore size (mm)	Applicable tool	
16	Flat head watchmakers screw driver 3mi	
20, 25, 32, 40 JIS B4648 hexagon wrench key 1.		
50, 63 JIS B4648 hexagon wrench key 2		
80, 100	JIS B4648 hexagon wrench key 4	

2. Be sure to activate the air cushion at the cylinder stroke

Be sure to activate the air cushion at the end of the cylinder stroke. When it is intended to operate with the cushion valve fully opened, select a cylinder equipped with rubber bumper. If operated without confirming this point, the piston rod assembly, etc., may be damaged.

3. Be sure to operate a cylinder equipped with air cushion to the end of the stroke.

If it is not operated to the end of the stroke, the effect of the air cushion will not be fully exhibited. Consequently, in cases where the stroke is regulated by an external stopper, etc., caution must be exercised, as the air cushion may become completely ineffective.

Piping

⚠ Caution

Depending on the operating conditions, piping port positions can be changed by using a plug.

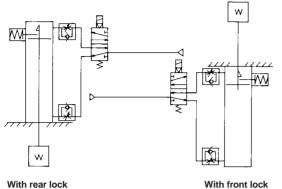
After tightening by hand, tighten an extra 1/6 to 1/4 rotation with a tightening tool.

2. For taper thread

Use the correct tightening torques listed below. Before tightening the plug, wrap pipe tape around it.

Connection thread size	Correct tightening torque N·m
R 1/8	7 to 9
R 1/4	12 to 14
R 3/8	22 to 24

Series MGP Specific Product Precautions


ALMOTION

Be sure to read before handling. Refer to pages 64 through 69 for safety instructions, actuator precautions and auto switch precautions.

Use the recommended pneumatic circuits.

⚠ Caution

• This is necessary for proper operation and release of the lock.

Operation

△Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed center metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time, due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

3. Release the lock when mounting or adjusting the cylinder.

If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.

4. Operate with a load ratio of 50% or less.

If the load ratio exceeds 50%, this may cause problems such as failure of the lock to release, or damage to the lock unit. Furthermore, do not exceed the operating ranges indicated in the series MGP catalog (Best Pneumatics No. 2) when making selections

5. Do not operate multiple synchronized cylinders.

Avoid applications in which two or more end lock cylinders are synchronized to move one workpiece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with the meter-out function.

It may not be possible to release the lock with meter-in control.

7. Be sure to operate completely to the cylinder stroke end on

the side with the lock.

If the cylinder piston does not reach the end of the stroke, lo-

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible.

8. Do not use an air cylinder as an air-hydro cylinder.

This will cause leakage of hydraulic fluid.

Adjust an auto switch's position so that it operates for movement to both the stroke and backlash (2mm) positions.

A 2 color indication switch adjusted for green indication at the stroke end may change to red indication after the backlash return, but this is not abnormal.

Operating Pressure

⚠Caution

1. Use air pressure of at least 0.15MPa for the port on the lock mechanism side. This is necessary to release the lock.

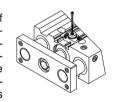
Exhaust Speed

⚠Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05MPa or less. In cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, the exhaust speed will be reduced. Take note that some time may be required for the lock to engage. In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Releasing the Lock

.Marning

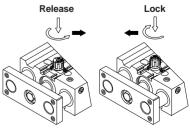

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the other side is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged. Furthermore, sudden movement of the piston rod is very dangerous.

Manual Release

△Caution

1. Non-locking type manual release

Insert the accessory bolt from the top of the rubber cap (it is not necessary to remove the rubber cap), and after screwing it into the lock piston, pull it to release the lock. If you stop pulling the bolt, the lock will return to an operational state. Thread sizes, pulling forces and strokes are as shown below.


Bore size (mm)	Thread size	Pulling force N	Stroke (mm)
20, 25, 32	M2.5 x 0.45 x 25ℓ or more	4.9N	2
40, 50, 63	M3 x 0.5 x 30ℓ or more	10N	3
80, 100	M5 x 0.8 x 40ℓ or more	24.5N	3

^{*} Remove the bolt for normal operation. It can cause lock malfunction or faulty release.

2. Locking type manual release

While pushing the M/O knob turn it 90° counter clockwise. The lock is released (and remains in a released state) by aligning the ▲ mark on the cap with the ▼ OFF mark on the M/O knob. To operate the lock, turn the M/O knob 90° clockwise while

pushing it all the way down, and align the ▲ mark on the cap with the ▼ ON mark on the M/O knob. When doing this, be sure that it locks into place with a click. Failure to click into place properly, can cause the lock to disengage.

Locked condition Released condition

Austria

SMC Pneumatik GmbH (Austria) Girakstrasse 8, A-2100 Korneuburg Phone: 02262-62280, Fax: 02262-62285

Belgium SMC Pneumatics N.V./S.A. Nijverheidsstraat 20, B-2160 Wommelgem Phone: 03-355-1464, Fax: 03-355-1466

Czech

SMC Czech.s.r.o. Kodanska 46, CZ-100 10 Prague 10 Phone: 02-67154 790, Fax: 02-67154 793

Denmark

Jens Juuls vej 32, DK-8260 Viby J Phone: 45-70252900, Fax: 45-70252901

Estonia

Teknoma Eesti AS Mustamäe tee 5, EE-0006 Tallinn, Estonia Phone: 259530, Fax: 259531

Finland

SMC Pneumatiikka OY Veneentekijäntie 7, SF-00210 Helsinki Phone: 09-681021, Fax: 09-6810233

France

SMC Pneumatique, S.A. 1, Boulevard de Strasbourg, Parc Gustave Eiffel

Bussy Saint Georges F-77607 Marne La Vallee Cedex 3 Phone: 01-6476 1000, Fax: 01-6476 1010

Germany

SMC Pneumatik GmbH Boschring 13-15, D-63329 Egelsbach Phone: 06103-4020, Fax: 06103-402139

Greece

S. Parianopoulus S.A. 9, Konstantinoupoleos Street, GR-11855 Athens Phone: 01-3426076, Fax: 01-3455578

Hungary

SMC Hungary Kft. Budafoki ut 107-113, 1117 Budapest Phone: 01-204 4366, Fax: 01-204 4371

Ireland

SMC Pneumatics (Ireland) Ltd. 2002 Citywest Business Campus, Naas Road, Saggart, Co. Dublin Phone: 01-403 9000, Fax: 01-464 0500

SMC Italia S.p.A Via Garibaldi 62, I-20061 Carugate, (Milano) Phone: 02-92711, Fax: 02-92150394

Latvia

Ottensten Latvia SIA Ciekurkalna Prima Gara Linija 11, LV-1026 Riga, Latvia Phone: 371-23-68625, Fax: 371-75-56748

Lithuania

UAB Ottensten Lietuva Savanoriu pr.180, LT-2600 Vilnius, Lithuania Phone/Fax: 370-2651602

Netherlands

SMC Pneumatics BV Postbus 308, 1000 AH Amsterdam Phone: 020-5318888, Fax: 020-5318880

Norway

SMC Pneumatics (Norway) A/S Wollsveien 13 C, granfoss Noeringspark N-134 Lysaker, Norway Phone: 22 99 6036, Fax: 22 99 6103

Poland

Semac Co., Ltd. PL-05-075 Wesola k/Warszaway, ul. Wspolna 1A Phone: 022-6131847. Fax: 022-613-3028

Portugal

SMC España (Sucursal Portugal), S.A. Rua de Eng^o Ferreira Dias 452, 4100 Porto Phone: 02-610-89-22, Fax: 02-610-89-36

Romania

SMC Romania srl Vasile Stroescu 19, Sector 2, Bucharest Phone: 01-210-1354, Fax: 01-210-1680

Russia

SMC Pneumatik LLC Centrako Business Centre 103, Bolshoy Prospect V.O., 199106 St. Petersburg Phone: 812-1195131, Fax: 812-1195129

Slovakia

SMC Slovakia s.r.o. Pribinova ul. C. 25, 819 02 Bratislava Phone: 0-563 3548, Fax: 07-563 3551

Slovenia

SMC Slovenia d.o.o. Grajski trg 15, 8360 Zuzemberk Phone: 068-88 044 Fax: 068-88 041

Spain

SMC España, S.A. Zuazobidea 14, Pol. Ind. Jundiz, E-01015 Vitoria Phone: 945-184 100, Fax: 945-184 124

Sweden

SMC Pneumatics Sweden A.B. Ekhagsvägen 29-31, S-14105 Huddinge Phone: 08-603 07 00, Fax: 08-603 07 10

Switzerland

SMC Pneumatik AG Dorfstrasse 7, CH-8484 Weisslingen Phone: 052-396-3131, Fax: 052-396-3191

Turkey

Entek Pnömatik San. ve Tic Ltd. Sti. Perpa Tic. Merkezi Kat: 11 No: 1625, TR-80270 Okmeydani Istanbul Phone: 0212-221-1512, Fax: 0212-220-2381

UK SMC Pneumatics (UK) Ltd

Vincent Avenue, Crownhill, Milton Keynes, MK8 0AN Phone: 01908-563888 Fax: 01908-561185

OTHER SUBSIDIARIES WORLDWIDE:

ARGENTINA, AUSTRALIA, BOLIVIA, BRASIL, CANADA, CHILE, CHINA, HONG KONG, INDIA, MALAYSIA, MEXICO, NEW ZEALAND, PHILIPPINES, SINGAPORE, SOUTH KOREA, TAIWAN, THAILANDIA, USA, VENEZUELA For more information, please contact your local SMC Regional Centre

SMC UK Contact Numbers

Head Office: SMC Pneumatics (UK) Ltd, Vincent Avenue, Crownhill, Milton Keynes MK8 0AN

THE NATIONAL SALES CENTRE FOR ENGLAND & WALES **Internal Sales**

(Price, Delivery Information & Order Placement)

Freephone: 0800 138 2930 Fax: 01908 555064 e-mail:sales@smcpneumatics.co.uk

Customer Services (Post-Order Resolution)

Freephone: 0800 138 2931 Fax: 01908 555065 e-mail: customerservice@smcpneumatics.co.uk

TECHNICAL CENTRE

Freephone: 0800 138 2932 Fax: 01908 555066 e-mail: technical@smcpneumatics.co.uk

SMC FAST RESPONSE (Literature & Catalogue Requests)

0800 0262006

SMC SALES CENTRE FOR SCOTLAND & N. IRELAND

Tel: 01236 781133 Fax: 01236 780611

SMC Pneumatics (UK) Ltd, 1 Carradale Crescent, Broadwood Business Park, Cumbernauld, Glasgow G69 9LE

SMC UK Distributors

Birmingham JAMES LISTER Tel: 0121 5803800 Fax: 0121 5535951

BLACKBURN PNEUMATIC SYSTEMS LTD

Tel: 01254 682232 Fax: 01254 682224

Bristol APPLIED AUTOMATION Tel: 0117 9827769 Fax: 0117 9235522

Bury St Edmunds PNEUMATIC LINES Tel: 01284 706239 Fax: 01284 761218

Cardiff

WALES FLUID POWER Tel: 02920 494551 Fax: 02920 481955

Plymouth APPLIED AUTOMATION Tel: 01752 343300 Fax: 01752 341161

SMC CORPORATION 1-16-4 Shimbashi, Minato-ku, Tokio 105 JAPAN; Phone:03-3502-2740 Fax:03-3508-2480