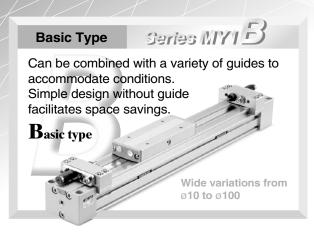
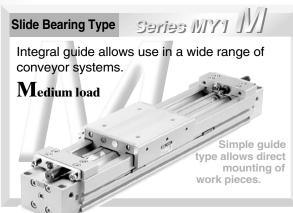
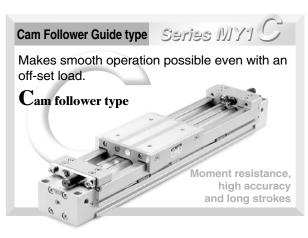
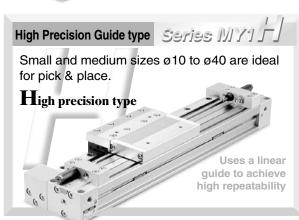


Mechanically Jointed Rodless Cylinder Series NY1




Five guide models allow a wide range of selections




MechanicallyJointed **Rodless Cylinder**

Series MY7

Centralized piping

Side support

Prevents cylinder tube

deflection in long strokes.

Piping ports are concentrated on one side.

Stroke availability

Strokes are selectable in 1mm units.

Stroke adjusting unit

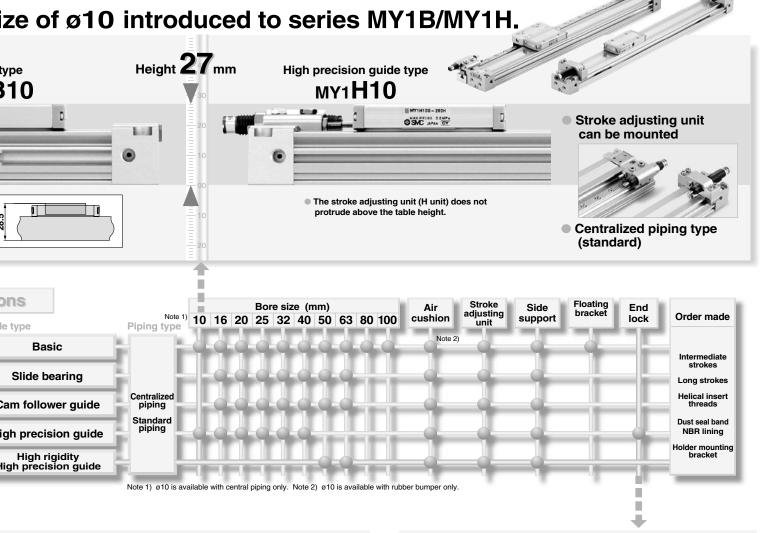
Stroke Adjusting is possible on one side or on both sides.

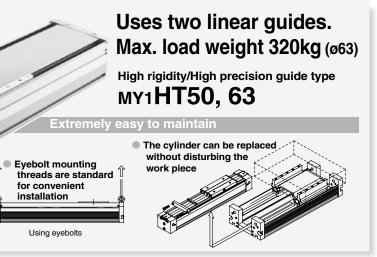
- Adjusting bolt
- Low load shock absorber + Adjusting bolt (L unit)
- High load shock absorber + Adjusting bolt (H unit)

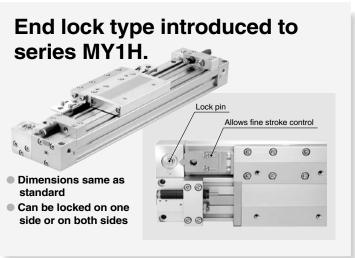
Interchangeability

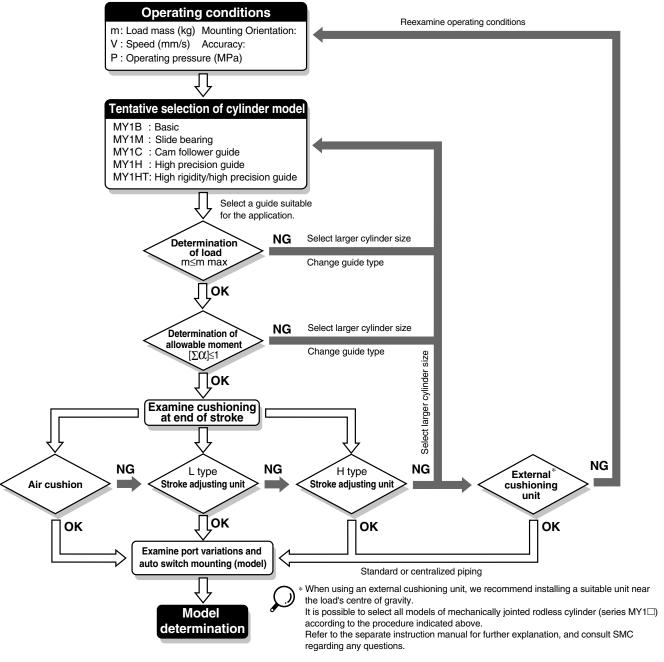
The bodies and work piece mountings are interchangeable between series MY1M and MY1C.

Minimum si



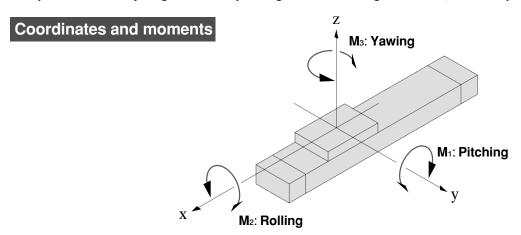


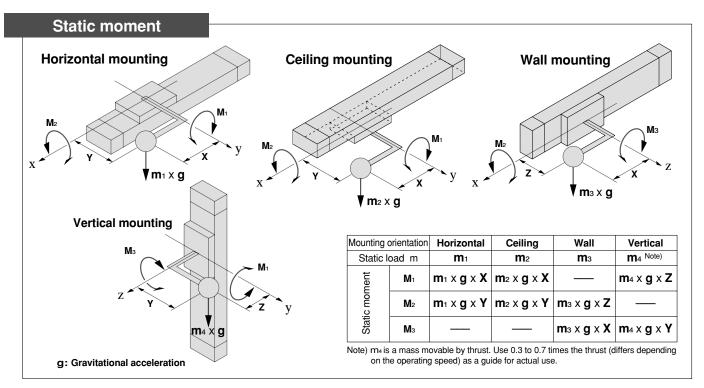


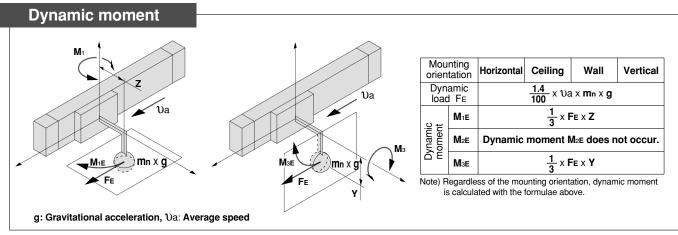

The following are steps for selection of the series MY1 best suited to your application.

Standards for Tentative Model Selection

Cylinder model	Guide type	Standards for guide selection	Graphs for related allowable values	M ₂ : Rolling M ₁ : Pitching
MY1B	Basic	Guaranteed accuracy not required, generally combined with separate guide	Refer to page 2-542	Wit: Pitching
MY1M	Slide bearing	Slide table accuracy approx. ±0.12mm Note 2)	Refer to page 2-564	
MY1C	Cam follower guide	Slide table accuracy approx. ±0.05mm Note 2)	Refer to page 2-580	
MY1H	High precision guide	Slide table accuracy of ± 0.05 mm or less required Note 2)	Refer to page 2-596	
MY1HT	High rigidity/high precision guide	Slide table accuracy of ± 0.05 mm or less required Note 2)	Refer to page 2-618	
MY10	C/MY1H.	ctions regarding guide accuracy. Consult SMC when guaranteed accuracy is the table (at stroke end) when 50% of the allowable moment shown in the cata		Ma: Yawing

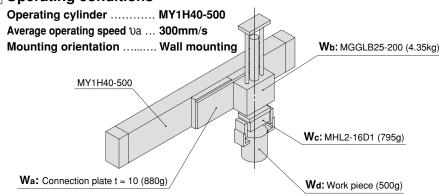

(reference value)

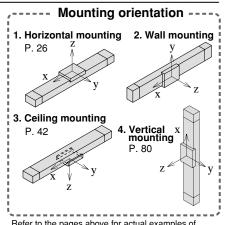

Selection Flow Chart



Types of Moment Applied to Rodless Cylinders

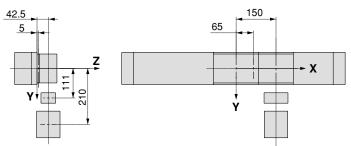
Multiple moments may be generated depending on the mounting orientation, load and position of the centre of gravity.




Series MY1 **Model Selection**

The following are steps for selection of the series MY1 best suited to your application.

Calculation of Guide Load Factor


1 Operating conditions

Refer to the pages above for actual examples of

2 Load blocking

Work piece mass and centre of gravity

				<u> </u>					
Work	Mass	С	Center of gravity						
piece no. Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn					
Wa	0.88kg	65mm	0mm	5mm					
Wb	4.35kg	150mm	0mm	42.5mm					
Wc	0.795kg	150mm	111mm	42.5mm					
Wd	0.5kg	150mm	210mm	42.5mm					

n = a, b, c, d

3 Calculation of composite centre of gravity

$$\mathbf{m}_3 = \Sigma \mathbf{m}_0$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525kg**

$$Y = \frac{1}{m_3} \times \Sigma (m_1 \times y_1)$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 \text{mm}$$

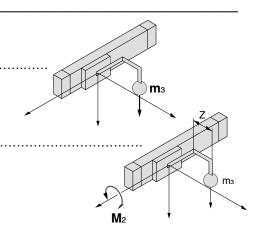
$$Z = \frac{1}{m_3} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{mm}$$

4 Calculation of load factor for static load -

m₃: Mass

m₃ max (from 1 of graph MY1H/m₃) = 50 (kg)

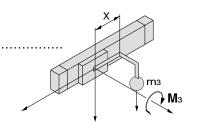

Load factor $\alpha_1 = m_3 / m_3 \text{ max} = 6.525 / 50 = 0.13$

M2: Moment

 M_2 max (from 2 of graph MY1H/M₂) = 50 (N·m)

 $M_2 = m_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 (N \cdot m)$

Load factor $\alpha_2 = M_2/M_2 \text{ max} = 2.39/50 = 0.05$



M₃: Moment

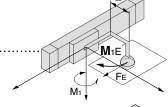
M₃ max (from 3 of graph MY1H/M₃) = 38.7 (N·m)

 $M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 (N \cdot m)$

Load factor $\alpha_3 = M_3/M_3 \text{ max} = 8.86/38.7 = 0.23$

5 Calculation of load factor for dynamic moment -

Equivalent load FE at impact

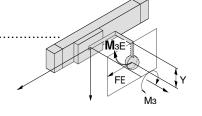

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 300 x 9.8 x 6.525 = 268.6 (N)

M₁E: Moment

 M_1E max (from 4 of graph MY1H/M₁ where 1.4 νa = 420mm/s) = 35.9 (N·m)

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$

Load factor OL4 = M1E/M1E max = 3.35/35.9 = 0.09



M₃F: Moment

 M_3E max (from 5 of graph MY1H/M3 where 1.4va = 420mm/s) = 27.6 (N·m)

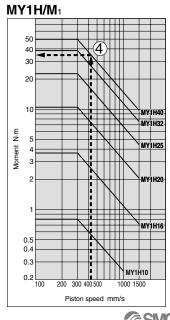
$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$$

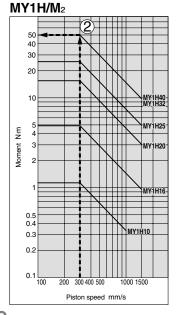
Load factor $\alpha 5 = M_3 E/M_3 E \text{ max} = 2.65/27.6 = 0.10$

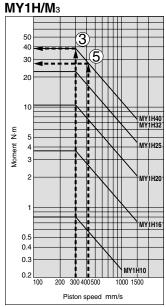
6 Sum and examination of guide load factors

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.60 \le 1$

The above calculation is within the allowable value and the selected model can be used.

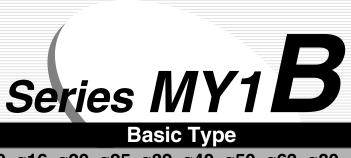

Select a separate shock absorber.

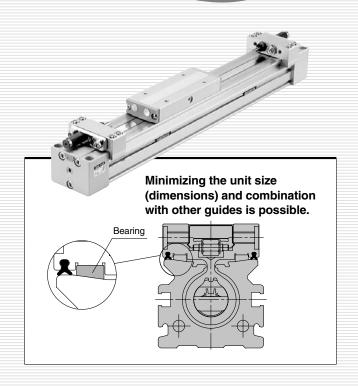

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


Load mass

Allowable moment

MY1H/m₃ <u>გ</u> Load Piston speed mm/s



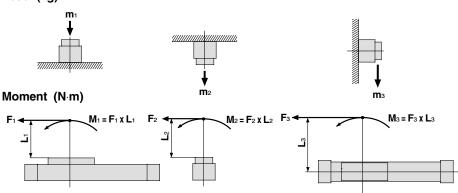


ALMOTION

Ø10, Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Before Operating Series MY1B

Maximum Allowable Moment/Maximum Allowable Load


Model	Bore size	Max. allov	wable mome	ent (N·m)	Max. a	allowable loa	ıd (kg)	
Model	(mm)	M 1	M ₂	Мз	m 1	m 2	m 3	
	10	0.8	0.1	0.3	5.0	1.0	0.5	
	16	2.5	0.3	0.8	15	3.0	1.7	
	20	5.0	0.6	1.5	21	4.2	3.0	
	25	10	1.2	3.0	29	5.8	5.4	
MY1B	32	20	2.4	6.0	40	8.0	8.8	
IVITID	40	40	4.8	12	53	10.6	14	
	50	78	9.3	23	70	14	20	
	63	160	19	48	83	16.6	29	
	80	315	37	95	120	24	42	
	100	615	73	184	150	30	60	

The above values are the maximum allowable values for moment and load weight. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Design precautions

We recommend installing an external shock absorber when the cylinder is combined with another guide (connection with floating bracket, etc.) and the maximum allowable load is exceeded, or when the operating speed is 1000 to 1500mm/s for bore sizes ø16, ø50, ø63, ø80 and ø100.

Load (kg)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of impact with stopper) (3) must be examined for the selection calculations.
- * To evaluate, use \mathcal{V} a (average speed) for (1) and (2), and \mathcal{V} (impact speed \mathcal{V} = 1.4 \mathcal{V} a) for (3). Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

2. Reference formulae [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

υ : Impact speed (mm/s)

F: Load (N)

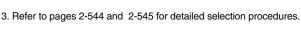
L1: Distance to the load's center of gravity (m)

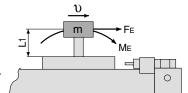
FE: Load equivalent to impact (at impact with stopper) (N) ME: Dynamic moment (N·m)

Va: Average speed (mm/s)

g: Gravitational acceleration (9.8m/s²)

M : Static moment (N·m)

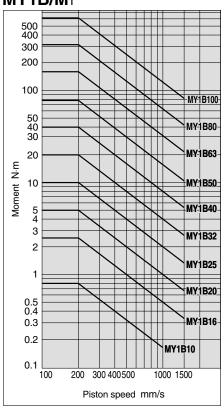

 $\upsilon = 1.4\upsilon a \text{ (mm/s)} \quad F_E = \frac{1.4}{100} \upsilon a \cdot g \cdot m^{\text{Note 4}}$


 $\therefore M \text{E} = \frac{1}{3} \cdot \text{FE} \cdot \text{L}_1 = 0.05 \\ \text{Va m L}_1 \quad \text{(N·m)}$

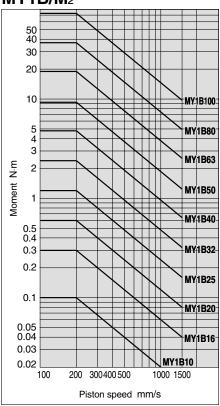
Note 4) $\frac{1.4}{100}$ varphi a is a dimensionless coefficient for calculating impact force.

Note 5) Average load coefficient (= $\frac{1}{3}$):

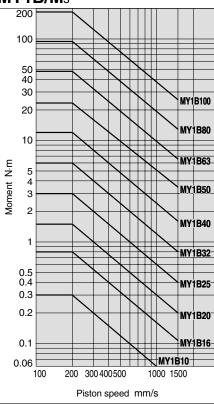
This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

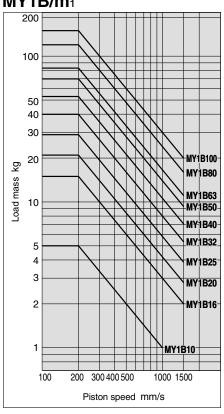

Maximum allowable moment

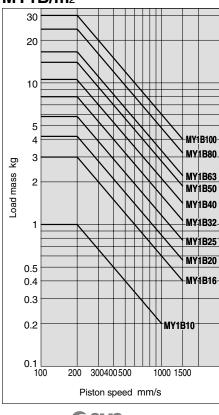
Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

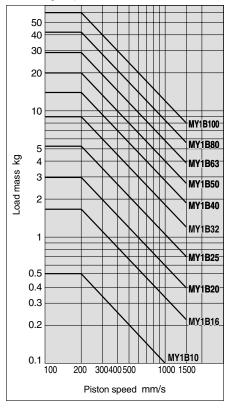

Maximum allowable load

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.


MY1B/M₁


MY1B/M₂

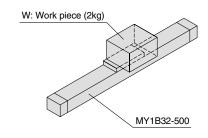

MY1B/M₃

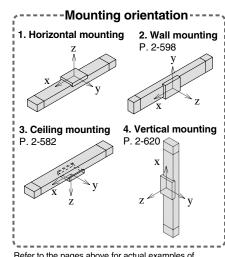

MY1B/m₁

MY1B/m₂

MY1B/m₃

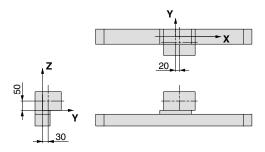
Series MY1B Model Selection


The following are steps for selection of the series MY1 best suited to your application.


Calculation of Guide Load Factor

1 Operating conditions

Cylinder MY1B32-500 Average operating speed \Im a 300mm/s


Mounting orientation Horizontal mounting

Refer to the pages above for actual examples of calculation for each orientation.

2 Load blocking

Work piece mass and centre of gravity

Work piece	Mass	С	enter of gravi	ty
no.	m	X-axis	Y-axis	Z-axis
W	2kg	20mm	30mm	50mm

3 Calculation of load factor for static load

m₁: Mass

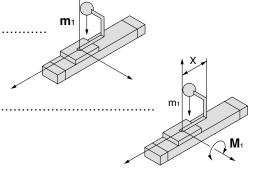
m₁ max (from 1 of graph MY1B/m₁ = 27 (kg)

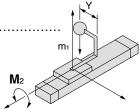
Load factor $\alpha_1 = m_1/m_1 \text{ max} = 2/27 = 0.07$

M₁: Moment

 M_1 max (from 2 of graph MY1B/ M_1) = 13 (N·m)

 $M_1 = m_1 \times g \times X = 2 \times 9.8 \times 20 \times 10^{-3} = 0.39 \text{ (N·m)}$


Load factor $\alpha_2 = M_1/M_1 \text{ max} = 0.39/13 = 0.03$


M₂: Moment

 M_2 max (from 3 of graph MY1B/M₂) = 1.6 (N·m)

 $M_3 = m_1 \times g \times Y = 2 \times 9.8 \times 30 \times 10^{-3} = 0.59 \text{ (N·m)}$

Load factor $\alpha_3 = M_2/M_2 \text{ max} = 0.59/1.6 = 0.37$

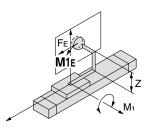
4 Calculation of load factor for dynamic moment –

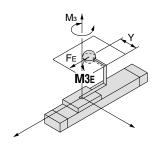
Equivalent load FE at impact

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 300 x 9.8 x 2 = 82.3 (N)

 M_1E max (from 4 of graph MY1B/M₁ where 1.4 ν a = 420mm/s) = 9.5 (N·m)

$$M_1E = \frac{1}{3} x FE x Z = \frac{1}{3} x 82.3 x 50 x 10^{-3} = 1.37 (N \cdot m)$$


Load factor $\alpha_4 = M_1 E/M_1 E \text{ max} = 1.37/9.5 = 0.14$


M₃E: Moment

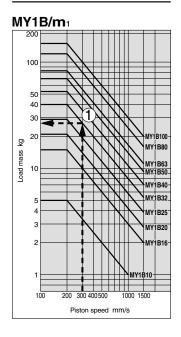
 M_3E max (from 5 of graph MY1B/M₃ where 1.4va = 420mm/s) = 2.9 (N·m)

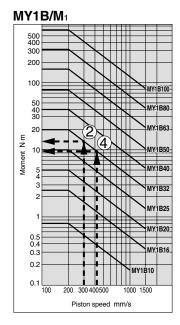
$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 82.3 \times 30 \times 10^{-3} = 0.82 \text{ (N·m)}$$

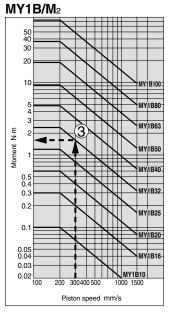
Load factor $\alpha_5 = M_3E/M_3E \text{ max} = 0.82/2.9 = 0.28$

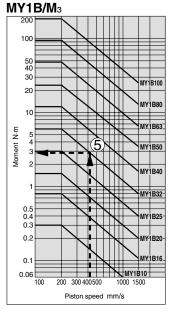
5 Sum and examination of guide load factors -

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.89 \le 1$

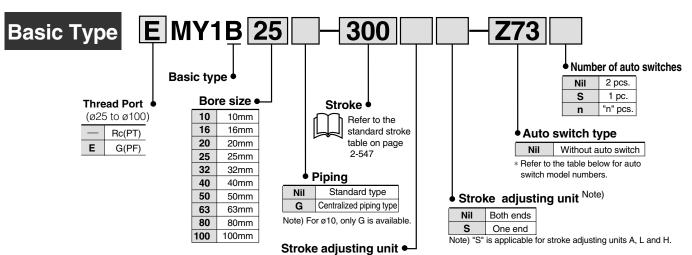

The above calculation is within the allowable value and the selected model can be used.


Select a separate shock absorber.


In an actual calculation, when the sum of guide load factors $\Sigma\alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


Load mass

Allowable moment



Mechanically Jointed Rodless Cylinder

Series MY1B

Basic Type/ø10, ø16, ø20, ø25, ø32, ø40, ø50, ø63, ø80,

How to Order

Only the A unit is available for ø16. Stroke adjusting unit is not available for ø50, ø63, ø80 and ø100. Refer to page 2-549 for detailed information on stroke adjusting unit specifications.

Nil	Without adjusting unit
Α	With adjusting bolt
L	With low load shock absorber + adjusting bolt
Н	With high load shock absorber + adjusting bolt
AL	With one A unit and one L unit each
AH	With one A unit and one H unit each
LH	With one L unit and one H unit each

Shock absorbers for L and H units

Bore size (mm)	10	20	25	32	40
L unit	-	RB0806	RB1007	RB1	1412
H unit	RB0805	RB1007	RB1412	RB2	2015

Options

Stroke adjusting unit numbers

Bore size (mm) Unit no.	10	16	20	25	32
A unit	MY-A10A	MY-A16A	MY-A20A	MY-A25A	MY-A32A
L unit	_	_	MY-A20L	MY-A25L	MY-A32L
H unit	MY-A10H	_	MY-A20H	MY-A25H	MY-A32H
Bore size (mm) Unit no.	40				
A unit	MY-A40A				
L unit	MY-A40L				
H unit	MY-A40H				

Side support numbers

Bore size (mm) Type	10	16	20	25	32			
Side support A	MY-S10A	MY-S16A	MY-S20A	MY-S	S25A			
Side support B	MY-S10B	MY-S16B	S16B MY-S20B MY-S25B					
Bore size (mm)	40	50	63	80	100			
Type								
Side support A	MY-S	S32A	MY-S50A	MY-S				
- 71		S32A S32B	MY-S50A MY-S50B		63A			

Applicable auto switches/

For ø10. ø16. ø20

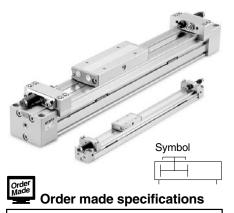
•	· ~ .	· •, ~	. •	, 920										
		F	light		Loa	d vo	Itage	Auto switch	h models	Lead wire	elengt	h (m)*		
Type	Special	Electrical entry	Indicator light	Wiring	viring		g-	Electrical entry direction		0.5	3	5	Appli loa	
-	luliction	Citity	Ē	(Output)	D	C AC		Perpendicular	In-line	(Nil)	(L)	(Z)	100	au
switch			No		24V	5V 12V	100V or less	A90V	A90	•	•	_	IC circuit	Relay,
d sw	—	Grommet	Yes	2 wire	24V	12V	100V	A93V	A93	•	•	_	_	PLĆ
Reed				3 wire (NPN equiv.)	_	5V	_	A96V	A96	•	•	_	IC circuit	_
				3 wire (NPN)				M9NV	M9N	•	•	_		
switch	—			3 wire (PNP)				M9PV	М9Р	•	•	_		
		Grommet	Vac	2 wire	24V	10\/		M9BV	М9В	•	•	_		Relay,
Solid state	Diagnostic		165	3 wire (NPN)	24 V	120	_	M9NWV	M9NW	•	•	0	_	PLC
Solie	indication (2 colour			3 wire (PNP)				M9PWV	M9PW	•	•	0		
	indicator)			2 wire				M9BWV	M9BW	•	•	0		

* Lead wire length symbols: 0.5m..... Nil (Example) M9NW 3m.....L

** Solid state switches marked with a "O" symbol are produced upon receipt of order.

For Ø25, Ø32, Ø40, Ø50, Ø63, Ø80, Ø100

Ф	Special	Electrical	Indicator light	Wiring	Loa	ad vol	Itage	Auto switc	h models	Lead wir	e lengt	h (m)*	-	
Type	function	entry	cator	(output)	_		<u> </u>	Electrical ent			3	5		cable ad
			Indi	` ' '	ט	С	AC	Perpendicular	In-line	(Nil)	(L)	(Z)		au
itch			Yes	3 wire (NPN equiv.)	_	5V	_	_	Z 76	•	•	_	IC circuit	_
Reed switch	_	Grommet	res	2 wire	24V	12V	100V	_	Z73	•	•	•	_	Relay,
Ree			No	2 wire	24V	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC	
switch	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit	
state sv		Grommet	Vaa	2 wire	24V	12V		Y69B	Y59B	•	•	0	_	Relay,
id sta	Diagnostic		res	3 wire (NPN)	240	5V	_	Y7NWV	Y7NW	•	•	0	IC	PLC
Solid	(2 colour			3 wire (PNP)		12V		Y7PWV	Y7PW	•	•	0	circuit	
	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_	


* Lead wire length symbols: 0.5m Nil (Example) Y59A 3m L Y59AL 3m L Y59AL
5m Z Y59AZ

** Solid state switches marked with a "O" symbol are produced upon receipt of order.

Mechanically Jointed Rodless Cylinder Basic Type

Series MY1B

Refer to page 2-645 regarding order made specifications for series MY1B.

Spe	ecifications													
	Bore size (mm)	10	16	20	25	32	40	50	63	80	100			
Flui	d		Air											
Acti	on		Double acting											
Oper	rating pressure range	0.2 to 0.8MPa				0.1 to 0).8MPa							
Prod	of pressure		1.2MPa											
Ambie	ent and fluid temperature		5 to 60°C											
Cus	hion	Rubber bumper												
Lub	ricaton		Non-lube											
Stro	ke length tolerance	1000 or le 1001 to 3			2700 or less ^{+1.8} , 2701 to 5000 ^{+2.8}					.8				
size	Front/Side ports	М	15 x 0.8		1	/8	1/4	3.	/8	1.	/2			
Port s	Bottom ports (centralized piping type only)		Ø	4	ø5	ø6	ø8	ø10	ø11	ø16	ø18			

Stroke adjusting unit specifications

Bore size (mm)	1	0	16	20				25			32			40	
Unit symbol	Α	Н	Α	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration and shock absorber	With adjusting bolt	RB 0805 With adjusting bolt	With adjusting bolt			RB 1007 + With adjusting bolt	With adjusting bolt		RB 1412 + With adjusting bolt	With adjusting bolt		RB 2015 + With adjusting bolt	With adjusting bolt		RB 2015 + With adjusting bolt
Stroke fine adjusting range (mm)	0 to	o -5	0 to -5.6	0 to -6		(0 to -11.5	;	0 to -12			0 to -16			
Stroke adjusting range	When 6	When exceeding the stroke fine adjusting range: Use order made specifications "-X416" and										" (Refer	to page 2	-645 for (details.)

Shock absorber specifications

Mod	del	RB 0805	RB 0806	RB 1007	RB 1412	RB 2015		
Max. energy	absorption (J)	1.0	2.9	5.9	19.6	58.8		
Stroke abso	orption (mm)	5	6	7	12	15		
Max. impact	speed (mm/s)	1000	1500	1500	1500	1500		
Max. operating from	equency (cycles/min)	80	80	70	45	25		
Spring	Extended	1.96	1.96	4.22	6.86	8.34		
force (N)	Compressed	3.83	4.22	6.86	15.98	20.50		
Operating temp	erature range (°C)	5 to 60						

Linit: N

	The original content of													
Bore	Piston													
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8						
10	78	15	23	31	39	46	54	62						
16	200	40	60	80	100	120	140	160						
20	314	62	94	125	157	188	219	251						
25	490	98	147	196	245	294	343	392						
32	804	161	241	322	402	483	563	643						
40	1256	251	377	502	628	754	879	1005						
50	1962	392	588	784	981	1177	1373	1569						
63	3115	623	934	1246	1557	1869	2180	2492						
80	5024	1004	1507	2009	2512	3014	3516	4019						
100	7850	1570	2355	3140	3925	4710	5495	6280						

1N = Approx. 0.102kgf, 1MPa = Approx.10.2kgf/cm² Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Calculation method Example: **MY1B25-300A**

Theoretical output

Basic weight	1.33kg
Cylinder stroke	300mm
Additional weight	. 0.12/50mm stroke
$1.33 + 0.12 \times 300 \div 50 + 0.06 \times 2 = Approx. 2$	2.17kg
Weight of A unit	. 0.06kg

Piston speed

Bore s	ize (mm)	10	16 to 100		
Without stroke	adjusting unit	100 to 500mm/s	100 to 1000mm/s		
Stroke	A unit		100 to 1000mm/s Note 1)		
adjusting unit	L unit and H unit	100 to 1000mm/s	100 to 1500mm/s Note 2)		

Note 1) Be aware that when the stroke adjusting range is increased by manipulating the adjusting bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 2-549, the **piston spee**d should be **100 to 200mm per second.**

Note 2) For centralized piping, the piston speed is 100 to 1000mm per second. Note 3) Use at a speed within the absorption capacity range. Refer to page 2-548

Standard strokes

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
10 and16	100, 200, 300, 400, 500, 600, 700	3000
20, 25, 32, 40 50, 63, 80, 100	800, 900, 1000, 1200, 1400, 1600 1800, 2000	5000

^{*} Strokes are manufacturable in 1mm increments, up to the maximum stroke. However, when exceeding a 2000mm stroke, specify "-XB11" at the end of the model number. Refer to the order made specifications on page 2-645

Weights Unit: kg

Bore size	Basic	Additional	Side support weight (per set)	Stroke adjusting unit weight (per unit)			
(mm)	mm) weight weight per 50mm of stroke		Type A and B	A unit	L unit	H unit	
10	0.15	0.04	0.003	0.01	_	0.02	
16	0.61	0.06	0.01	0.04			
20	1.06	0.10	0.02	0.05	0.05	0.10	
25	1.33	0.12	0.02	0.06	0.10	0.18	
32	2.65	0.18	0.02	0.12	0.21	0.40	
40	3.87	0.27	0.04	0.23	0.32	0.49	
50	7.78	0.44	0.04	_			
63	13.10	0.70	0.08	_	_	_	
80	20.70	1.18	0.17	_	_	_	
100	35.70	1.97	0.17	_	_	_	

Cushion Capacity

Cushion selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1B10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders. (Except ø10.)

The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

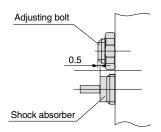
The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

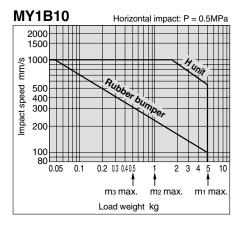
L unit

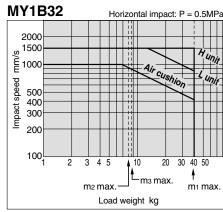
Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

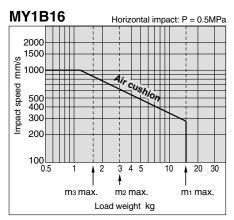

H unit

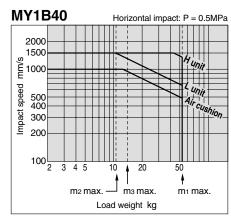
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

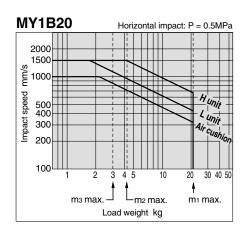
⚠ Caution

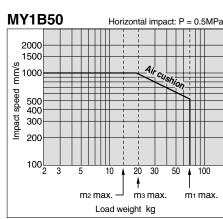

 Refer to the diagram below when using the adjusting bolt to perform stroke adjustment.

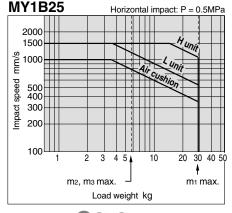

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5mm from the shock absorber.

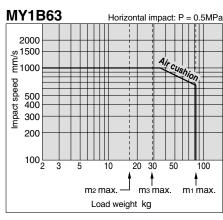


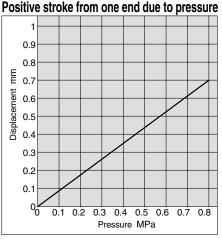

Do not use a shock absorber and air cushion together.


Absorption capacity of rubber bumper, air cushion and stroke adjusting units








Mechanically Jointed Rodless Cylinder

MY1B80 2000 ဖ္ 1500 E 1000 500 400 300 200 100 20 30 50 100 m1 max. m3 max. Load weight kg

MY1B100 Horizontal impact: P = 0.5MPa 2000 1500 Impact speed 500 300 200 100 20 30 m₂ max m3 max. m1 max. Load weight kg

Air cushion st	roke Unit: mm
Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37
80	40
100	40

Rubber bumper (ø10 only)

Stroke adjusting unit holding bolt tightening torque Unit: N·m

Bore size (mm) Tightening torque Α 10 0.3 Н 16 Α 0.6 Α 20 L 1.5 Н Α 25 3.0 Н Α 32 5.0 Н Α 40 10 ı Н

Stroke adjusting unit lock plate holding bolt tightening torque Unit: N·m

Bore size (mm)	Unit	Tightening torque
20	Н	1.2
25	L	1.2
25	Н	3.3
32	L	3.3
32	Н	10
40	L	3.3
40	Н	10

Calculation of absorption energy for stroke adjusting unit with shock absorber Unit: N·m

	Horizontal	Vertical (downward)	Vertical (upward)
Type of impact	<u>s</u>	U m s	
Kinetic energy E ₁		$\frac{1}{2}$ m· V^2	
Thrust energy E ₂	F⋅s	F·s + m·g·s	F·s – m·g·s
Absorbed energy E		E1 + E2	

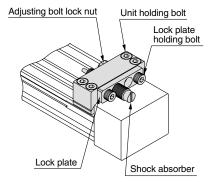
 υ : Speed of impacting object (m/s)

m: Weight of impacting object (kg)

F: Cylinder thrust (N)

g: Gravitational acceleration (9.8m/s²)

s: Shock absorber stroke (m)


Note) The speed of the impacting object is measured at the time of impact with the shock absorber.

Specific product precautions

∕ Caution

Be careful not to get hands caught in the unit.

• When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be fastened by uniformly tightening the four unit holding bolts.

Caution

Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In this case, we recommend using the adjusting bolt mounting brackets available with order made specifications -X 416 and -X 417. (Except ø10.)

For other lengths, consult SMC. (Refer to "Stroke adjustment unit holding bolt tightening torque".)

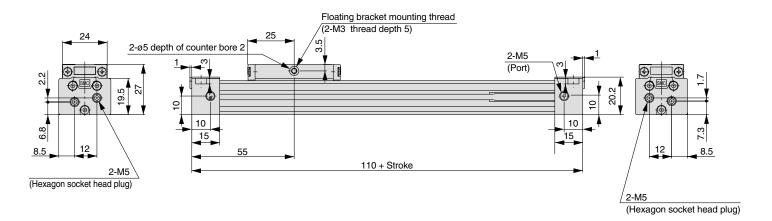
<Stroke adjustment with adjusting bolt>

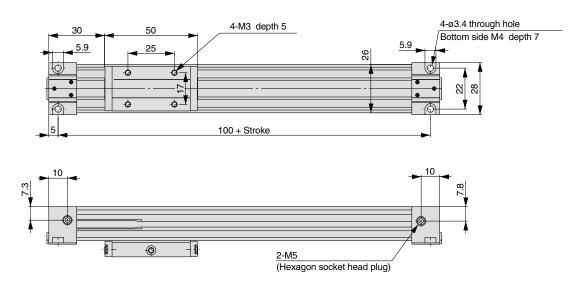
Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Re-tighten the lock nut.

<Stroke adjustment with shock absorber>

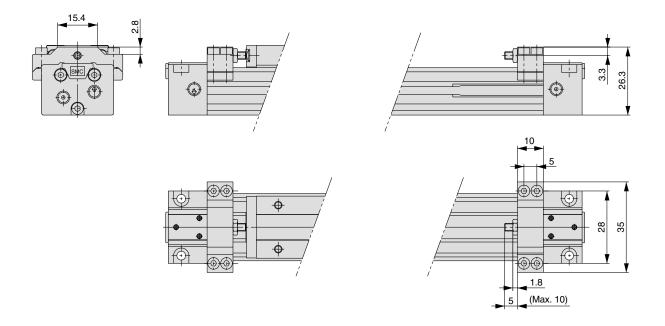
Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø20 L unit.) (Refer to "Stroke adjusting unit lock plate holding bolt tightening torque".)

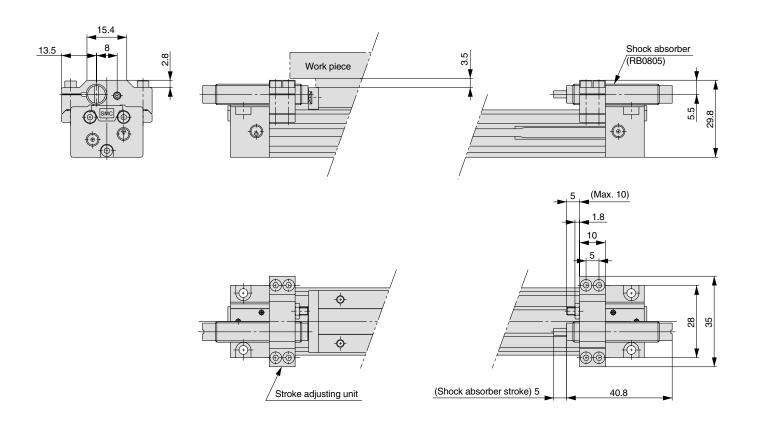

Slight bending may occur in the lock plate due to tightening of the lock plate holding bolts. This is not a problem for the shock absorber and locking function.



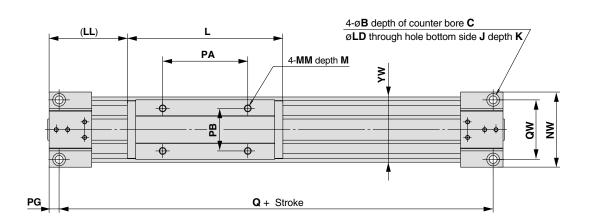
Centralized Piping Type Ø10

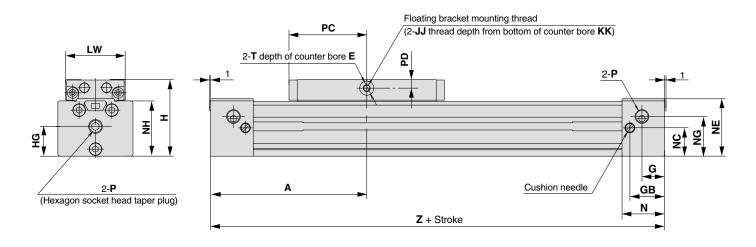

[Refer to page 2-648 regarding centralized piping port variations.]

MY1B10G — Stroke



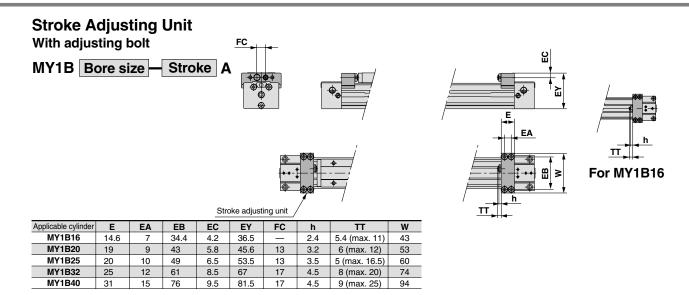
MY1B10G — Stroke A (with adjusting bolt)

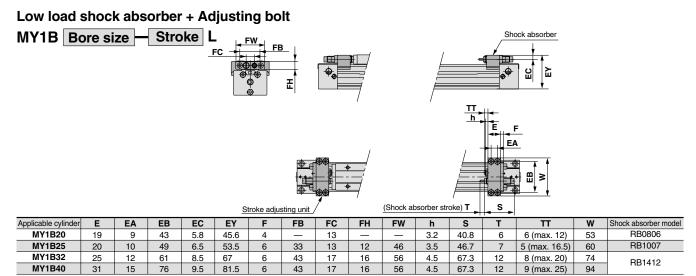

MY1B10G — Stroke H (with high load shock absorber + stopper bolt)

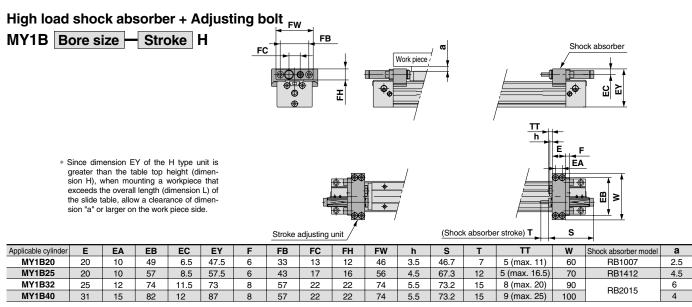


Standard Type Ø16 to Ø40

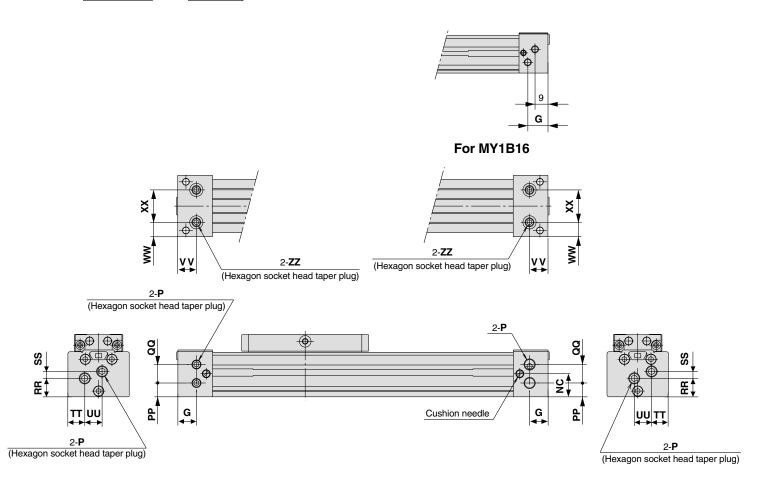
MY1B Bore size — Stroke





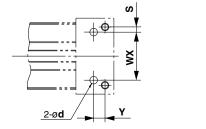

Model	Α	В	С	E	G	GB	Н	HG	J	JJ		K	KK	L	LD	LL	LW	PG
MY1B16	80	6	3.5	2	9	16	37	13.5	M5	M4 x (0.7	10	6.5	80	3.5	40	30	3.5
MY1B20	100	7.5	4.5	2	12.5	20.5	46	17.5	M6	M4 x (0.7	12	10	100	4.5	50	37	4.5
MY1B25	110	9	5.5	2	16	24.5	54	21	M6	M5 x (0.8	9.5	9	110	5.6	55	42	7
MY1B32	140	11	6.5	2	19	30	68	26	M8	M5 x (0.8	16	10	140	6.8	70	52	8
MY1B40	170	14	8.5	2	23	36.5	84	33.5	M10	M6 x	1	15	13.0	170	8.6	85	64	9
Model	M	MM	N	NC	NE	NG	NH	NW	Р	PA	PB	PC	PD	Q	QW	Т	YW	Z
My1B16	M 6	MM M4	N 20	NC 13.5		NG 13.5	NH 27	NW 37	P M5	PA 40	PB 20	PC 40	PD 4.5	Q 153	QW 30	T 7	YW 32	Z
					27.8				<u> </u>			+	+	-		T 7 8		
MY1B16	6	M4	20	13.5	27.8	13.5	27	37	M5	40	20	40	4.5	153	30	7 8 10	32	160
MY1B16 MY1B20	6	M4 M5	20	13.5 17.5	27.8	13.5 17.5	27 33.5	37 45	M5 M5	40 50	20 25	40 50	4.5	153 191	30	+ -	32 40	160

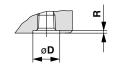
"P" indicates cylinder supply ports. * The plug for MY1B16-20-P is a hexagon socket head plug.



Centralized Piping Type $\emptyset 16$ to $\emptyset 40$

Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions.

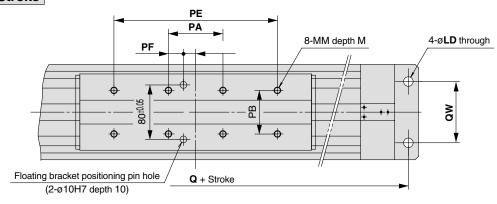

Refer to pages 2-552 and 2-553 for details regarding dimensions, etc.

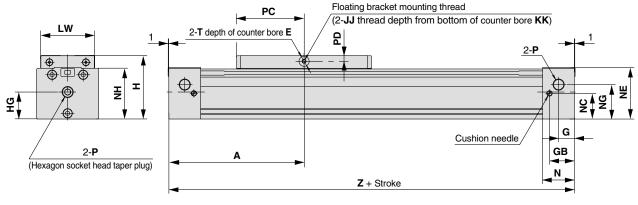

MY1B Bore size G - Stroke

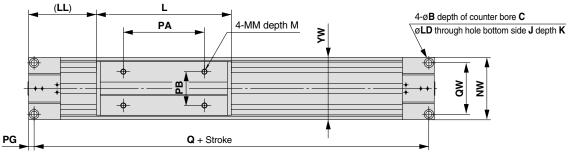
Model	G	NC	Р	PP	QQ	RR	SS	TT	UU	٧٧	ww	XX	ZZ
MY1B16G	14	14	M5	7.5	9	11	3	9	10.5	10	7.5	22	M5
MY1B20G	12.5	17.5	M5	11.5	11	14.5	5	10.5	12	12.5	10.5	24	M5
MY1B25G	16	20	1/8	12	16	16	6	14.5	15	16	12.5	28	1/16
MY1B32G	19	25	1/8	17	16	23	4	16	16	19	16	32	1/16
MY1B40G	23	30.5	1/4	18.5	24	27	10.5	20	22	23	19.5	36	1/8

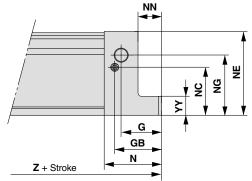
"P" indicates cylinder supply ports. * The plug for MY1B16/20-P-ZZ is a hexagon socket head plug.

Bottom side (ZZ) piping (applicable O-ring)


 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$


	Model	WX	Υ	S	d	D	R	Applicable O-ring
	MY1B16G	22	6.5	4	4	8.4	1.1	C6
Ī	MY1B20G	24	8	6	4	8.4	1.1	Co
	MY1B25G	28	9	7	6	11.4	1.1	C9
Ī	MY1B32G	32	11	9.5	6	11.4	1.1	C9
	MY1B40G	36	14	11.5	8	13.4	1.1	C11.2

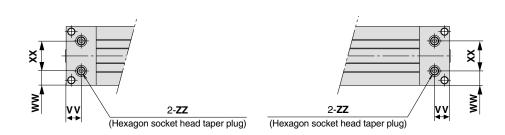


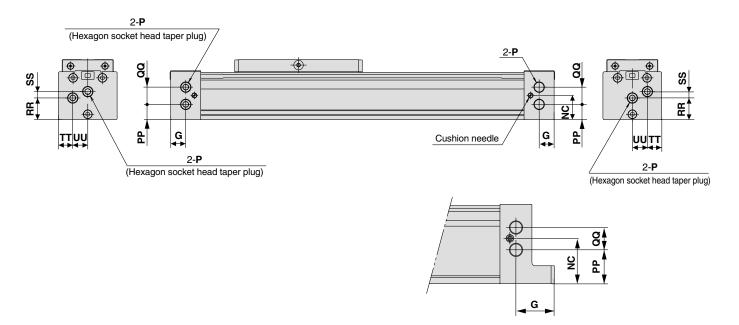

Standard Type Ø50 to Ø100

MY1B Bore size — Stroke

For MY1B80, 100

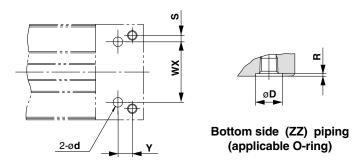
Model	Α	В	С	Е	G	GB	Н	HG	J	JJ	K	KI	K	L	LD	LL	LW	NN	YY	PG
MY1B 50	200	14	8.5	3	23.5	37	94	40	M12	M6	25	17	7 2	00	9	100	80	_	_	8
MY1B 63	230	17	10.5	3	25	39	116	51	M14	M8	28	24	4 2	30	11	115	96	_	_	10
MY1B 80	345	_	_	-	60	71.5	150	66	_	_	_	-	- 3	40	14	175	112	35	28	15
MY1B100	400	_	_	_	70	79.5	190	85	_	_	_	. -	- 4	00	18	200	140	45	35	20
Model	M	MM	l N	I N	C NE	NG	NH	NW	Р	PA	РВ	PC	PD	PE	PF	Q	QW	Т	YW	Z
Model MY1B 50	M 14	MM M8	1 4	_			NH 75	NW 92	P 3/8	PA 120	PB 50	PC 100	PD 8.5	PE —	PF —	Q 384		T 15	YW 92	Z
				7 3	8 76	.5 51	75		•					PE —	PF 		76	15 16		
MY1B 50	14	M8	4	7 3	8 76 1 100	.5 51	75 95	92	3/8	120	50	100	8.5	PE 240	-	384	76 92		92	400


Centralized Piping Type Ø50 to Ø100


Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping are identical to the standard type dimensions.

Refer to pages 2-555 for details regarding dimensions etc.

For MY1B80, 100

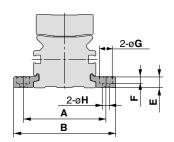

MY1B Bore size G — Stroke

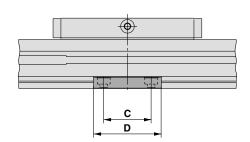
Model	G	Р	NC	PP	QQ	RR	SS	TT	UU	VV	ww	XX	ZZ
MY1B 50G	23.5	3/8	38	24	27	34	10	22.5	23.5	23.5	22.5	47	1/4
MY1B 63G	25	3/8	51	37.5	29.5	45.5	13.5	27	29	25	28	56	1/4
MY1B 80G	60	1/2	71	53	35	61	15	30	40	60	25	90	1/2
MY1B100G	70	1/2	88	69	38	75	20	40	48	70	28	120	1/2

* "P" indicates cylinder supply ports.

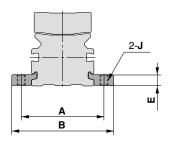
Hole sizes for centralized piping on the bottom (Machine the mounting side to the dimensions below.)

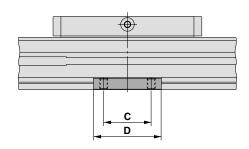
							· · · · · · · · · · · · · · · · · · ·
Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1B 50G	47	15.5	14.5	10	17.5	1.1	C15
MY1B 63G	56	15	18	10	17.5	1.1	U15
MY1B 80G	90	45	_	18	26	1.8	P22
MY1B100G	120	50	_	18	26	1.8	F22



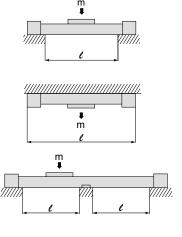

Mechanically Jointed Rodless Cylinder Basic Type

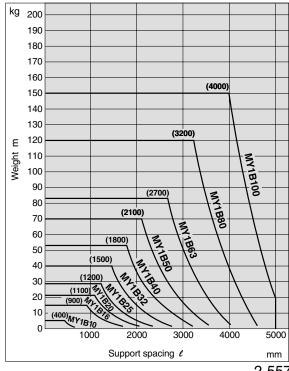
Series MY1B


Side Support


Side support A MY-S□A

Side support B MY-S□B

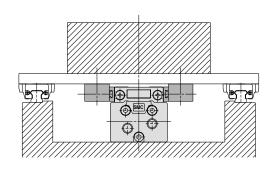

Model	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S10 A	MY1B 10	35	43.6	12	21	3.6	1.8	6.5	3.4	M4
MY-S16 A	MY1B 16	43	53.6	15	26	4.9	3	6.5	3.4	M4
MY-S20 A	MY1B 20	53	65.6	25	38	6.4	4	8	4.5	M5
MY-S25 A	MY1B 25	61	75	35	50	8	5	9.5	5.5	M6
WIT-323 B	MY1B 32	70	84	33	50	0) 5	9.5	5.5	IVIO
MY-S32 A	MY1B 40	87	105	45	64	11.7	6	11	6.6	M8
WIT-332 B	MY1B 50	113	131	45	04	11.7	0	11	0.0	IVIO
MY-S50 A	MY1B 63	136	158	55	80	14.8	8.5	14	9	M10
MY-S63 A	MY1B 80	170	200	70	100	18.3	10.5	17.5	11.5	M12
IVI 1 -303 B	MY1B100	206	236	70	100	10.3	10.5	17.5	11.5	IVI I Z


Guide for Using Side Supports

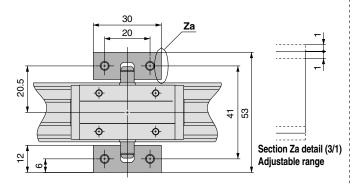
For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (*l*) of the support must be no more than the values shown in the graph on the right.

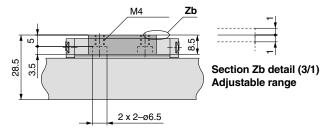
⚠ Caution

- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.


Floating Bracket

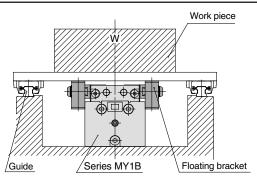
Facilitates connection to other guide systems.

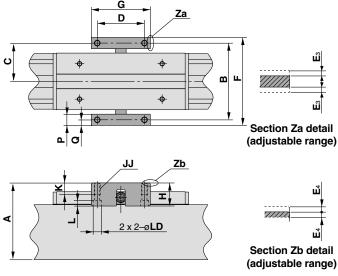

Applicable bore size


ø10

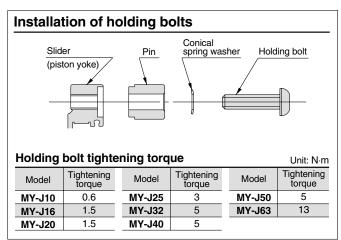
Application example

Mounting example



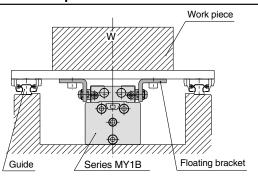

Applicable bore size

ø**16,** ø**20**

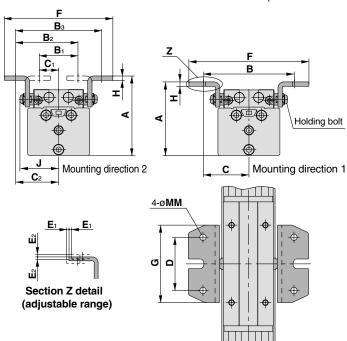

Application example

Mounting example

Model	Applicable cylinder	A	E	3	С	D	F		G	Н
MY-J16	MY1B16□	45	4	5	22.5	30	52	2	38	18
MY-J20	MY1B20□	55	5	2	26	35	59)	50	21
Model	Applicable cylinder	JJ		K	L	Р	Q	Ез	E 4	LD
MY-J16	MY1B16□	M4		10	4	7	3.5	1	1	6
MY-J20	MY1B20□	M4		10	4	7	3.5	1	1	6



Applicable bore size

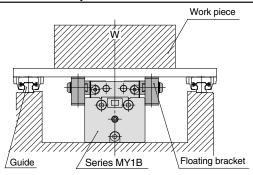

ø**25**, ø **32**, ø**40**

Application example

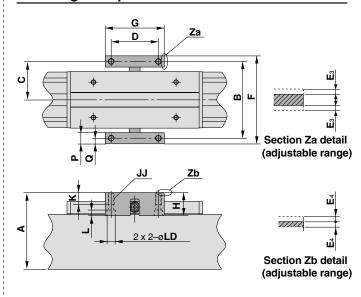
Mounting example

One set of brackets can be mounted in two directions for compact combinations.

Model	Applicable		С	ommo	n		unting	direction 1		
Model	cylinder	D	G	Н	J	MM	Α	В	С	F
MY-J25	MY1B25□	40	60	3.2	35	5.5	63	78	39	100
MY-J32	MY1B32□	55	80	4.5	40	6.5	76	94	47	124
MY-J40	MY1B40□	74	100	4.5	47	6.5	92	112	56	144
		Mounting direction 2								olo rango


Model	Applicable			Adjustable range						
Model	cylinder	Α	B ₁	B ₂	Вз	C ₁	C ₂	F	E ₁	E 2
MY-J25	MY1B25□	65	28	53	78	14	39	96	1	1
MY-J32	MY1B32□	82	40	64	88	20	44	111	1	1
MY-J40	MY1B40□	98	44	76	108	22	54	131	1	1

Note) One set of floating brackets consists of one right piece and one left piece.

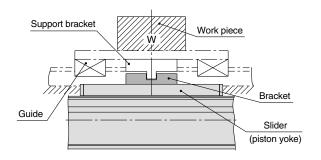

Applicable bore size

ø**50,** ø**63**

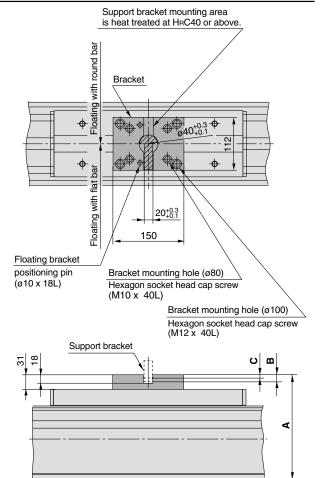
Application example

Mounting example

Model	Applicable cylinder	Α	E	3	С	D	F		G	Н
MY-J50	MY1B50□	110	11	10	55	70	12	6	90	37
MY-J63	MY1B63□	131	13	30	65	80	149	9	100	37
Model	Applicable cylinder	JJ		K	L	Р	Q	Ез	B E4	LD
MY-J50	MY1B50□	M8		20	7.5	16	8	2.5	5 2.5	11
MY-J63	MY1B63□	M1C)	20	9.5	19	9.5	2.5	5 2.5	14


Floating Bracket

Facilitates connection to other guide systems.


Applicable bore size

ø**80**, ø**100**

Application example

Mounting example

Hexagon socket head cap screw tightening Unit: N⋅m

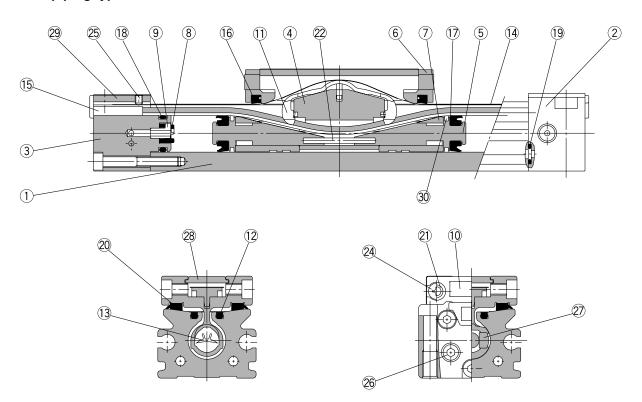
					torque	Unit: N·m
Model	Applicable cylinder	Α	B (max.)	C (min.)	Model	Tightening torque
MY-J 80	MY1B 80□	181	15	9	MY-J 80	25
MY-J100	MY1B100□	221	15	9	MY-J100	44

Note) • Flat bar or round bar mounting are possible for the support bracket (slanted lines) mounted by the customer.

- The floating bracket is packaged with (4) hexagon socket head cap screws and (2) parallel pins at the time of shipment.
- "B" and "C" indicate the allowable mounting dimensions for the support bracket (flat bar
- or round bar). • Consider support brackets with dimensions that allow the floating mechanism to function properly.

Floating bracket operating precautions

Caution


Make sure that the amount of divergence from the external guide is within the adjustable range.

Using the floating bracket facilitates connection to an external guide. However, with a rod type guide, etc., the amount of displacement is large and the floating bracket may not be able to absorb the variation. Check the amount of displacement and mount the floating bracket within the adjustable range.

When the displacement amount exceeds the adjustable range, use a separate floating mechanism.

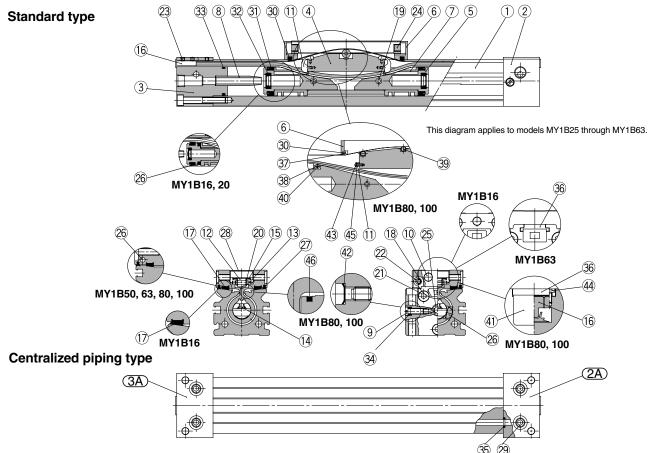
Construction/Ø10

Centralized piping type/MY1B10G

Parts list

No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover WL	Aluminum alloy	Hard anodized
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	

Parts list


No.	Description	Material	Note
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chrome molybdenum steel	Nickel plated
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
24	Round head Phillips screw	Carbon steel	Nickel plated
25	Hexagon socket head set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Nickel plated
27	Magnet	Rare earth magnet	
28	Top plate	Stainless steel	
29	Head plate	Stainless steel	
30	Felt	Felt	

Seal list

No.	Description	Material	Qty.	MY1B10
13	Seal belt	Special resin	1	MY10-16A-stroke
14	Dust seal band	Stainless steel	1	MY10-16B-stroke
16	Scraper	NBR	2	MYB10-15AR0597
17	Piston seal	NBR	2	
18	Tube gasket	NBR	2	
19	O-ring	NBR	4	

Construction/Ø16 to Ø100

Parts list

Parts	Parts list										
No.	Description	Material	Note								
1	Cylinder tube	Aluminum alloy	Hard anodized								
2	Head cover R	Aluminum alloy	Hard anodized								
2A	Head cover WR	Aluminum alloy	Hard anodized								
3	Head cover L	Aluminum alloy	Hard anodized								
ЗА	Head cover WL	Aluminum alloy	Hard anodized								
4	Piston yoke	Aluminum alloy	Hard anodized								
5	Piston	Aluminum alloy	Chromated								
6	End cover	Special resin									
	Elia covei	Carbon steel	Nickel plated (ø80 and ø100)								
7	Wear ring	Special resin									
8	Cushion ring	Brass									
9	Cushion needle	Rolled steel	Nickel plated								
10	Stopper	Carbon steel	Nickel plated (ø16 to ø40)								
11	Belt separator	Special resin									
12	Guide roller	Special resin									
13	Guide roller shaft	Stainless steel									
16	Belt clamp	Special resin									
-10	Delt Clamp	Aluminum alloy	Chromated (ø80 and ø100)								
17	Bearing	Special resin									
18	Spacer	Stainless steel									
19	Spring pin	Carbon tool steel	Black zinc chromated								

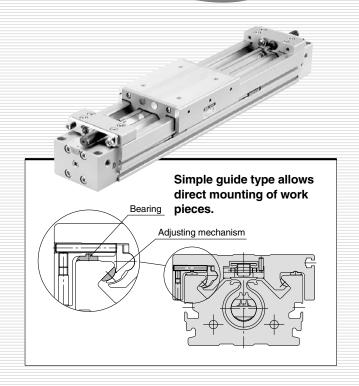
Parts list

raits	ans nst											
No.	Description	Material	Note									
20	Type E retaining ring	Cold rolled special steel strip										
21	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated									
22	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated									
23	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated/Nickel plated									
24	Double round parallel key	Carbon steel	(ø16 to ø40)									
25	Hexagon socket head taper plug	Carbon steel	Nickel plated									
26	Magnet	Rare earth magnet										
27	Side scraper	Special resin	(Except ø16)									
28	Top cover	Stainless steel										
29	Hexagon socket head taper plug	Carbon steel	Nickel plated									
36	Head plate	Aluminum alloy	Hard anodized (ø63 to ø100)									
37	Backup plate	Special resin										
38	Guide roller B	Special resin	(ø80 and ø100)									
39	Guide roller A	Stainless steel	(ø80 and ø100)									
40	Guide roller shaft B	Stainless steel	(ø80 and ø100)									
41	Side cover	Aluminum alloy	Hard anodized (ø80 and ø100)									
42	Type CR retaining ring	Spring steel	(ø80 and ø100)									
43	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated (ø80 and ø100)									
44	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated (ø80 and ø100)									
45	Spacer B	Stainless steel	(ø80 and ø100)									
46	Seal magnet	Rubber magnet	(ø80 and ø100)									

Seal list

No.	Description	Material	Qty.	MY1B16	MY1B20	MY1B25	MY1B32	MY1B40	MY1B50	MY1B63	MY1B80	MY1B100
14	Seal belt	Special resin	1	MY16-16A- Stroke	MY20-16A- Stroke	MY25-16A- Stroke	MY32-16A- Stroke	MY40-16A- Stroke	MY50-16A- Stroke	MY63-16A- Stroke	MY80-16A- Stroke	MY100-16A- Stroke
Note) 15	Dust seal band	Stainless steel	1	MY16-16B- Stroke	MY20-16B- Stroke	MY25-16B- Stroke	MY32-16B- Stroke	MY40-16B- Stroke	MY50-16B- Stroke	MY63-16B- Stroke	MY80-16B- Stroke	MY100-16B- Stroke
30	Scraper	NBR	2	MYB16-15AA7163	MYB20-15AA7164	MYB25-15AA5900	MYB32-15AA5901	MYB40-15AA5902	MYB50-15AA7165	MYB63-15AA7166	MYB80-15AK2470	MYB100-15AK2471
31	Piston seal	NBR	2									
32	Cushion seal	NBR	2									
33	Tube gasket	NBR	2									
34	O-ring	NBR	2									
35	O-ring	NBR	2									

Note) Two types of dust seal band are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ②. (A) Black zinc chromated —> MY — 16B-Stroke (B) Nickel plated —> MY — 1-16BW-Stroke



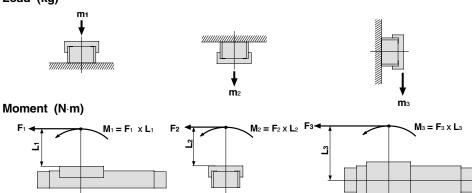
Series MY1 VI

Slide Bearing Type

Ø16, Ø20, Ø25, Ø32, Ø40, Ø50, Ø63

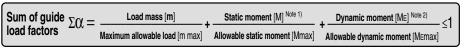
Before Operating Series MY1M

Maximum Allowable Moment/Maximum Allowable Load


Maralal	Bore size	Max. allo	wable mom	ent (N·m)	Max. allowable load (kg)			
Model	(mm)	M ₁	M ₁ M ₂ M ₃		m 1	m 2	m 3	
	16	6.0	3.0	1.0	18	7	2.1	
	20	10	5.2	1.7	26	10.4	3	
	25	15	9.0	2.4	38	15	4.5	
MY1M	32	30	15	5.0	57	23	6.6	
	40	59	24	8.0	84	33	10	
	50	115	38	15	120	48	14	
	63	140	60	19	180	72	21	

The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum allowable moment


Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load (kg)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of impact with stopper) (3) must be examined for the selection calculations.
- * To evaluate, use $\mathfrak{V}a$ (average speed) for (1) and (2), and \mathfrak{V} (impact speed $\mathfrak{V}=1.4\mathfrak{V}a$) for (3). Calculate m max for (1) from the maximum allowable load graph (m₁, m₂, m₃) and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors (Σα) is the total of all such moments.

2. Reference formulae [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m : Load mass (kg)

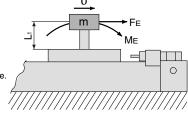
F : Load (N)

FE: Load equivalent to impact (impact with stopper)

 υ a : Average speed (mm/s)

M : Static moment (N·m)

$$\mathcal{V} = 1.4 \mathcal{V} \text{a (mm/s)} \qquad \text{FE} = \frac{1.4 \text{ Note 4}}{100} \mathcal{V} \text{a·g·m}$$


$$\therefore \text{ME} = \frac{1}{2} \cdot \text{FE} \cdot \text{L}_1 = 0.05 \mathcal{V} \text{a m L}_1 \text{ (N·m)}$$

Note 4) $\frac{1.4}{100}$ 0a is a dimensionless coefficient for calculating impact force.

Note 5) Average load coefficient (= $\frac{1}{3}$):

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

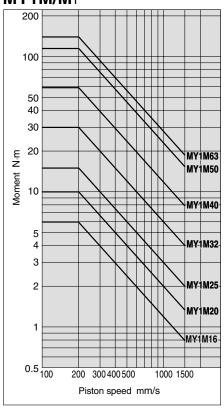
3. Refer to pages 2-566 and 2-567 for detailed selection procedures.

L1: Distance to the load's center of gravity (m)

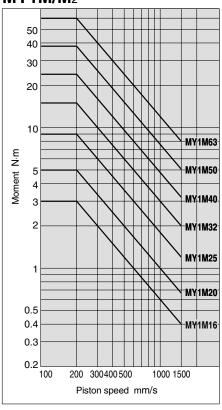
g: Gravitational acceleration (9.8m/s2)

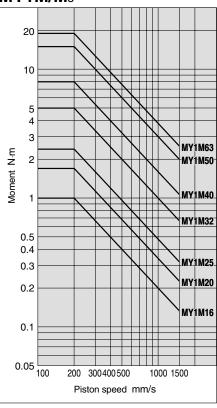
U: Impact speed (mm/s)

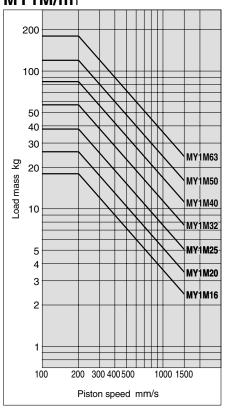
ME: Dynamic moment (N·m)

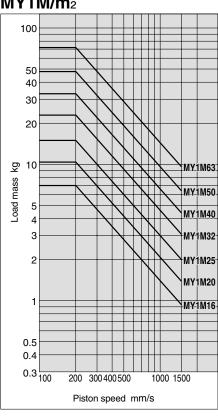

Maximum allowable load

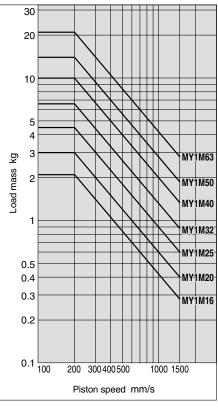
Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.


Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type



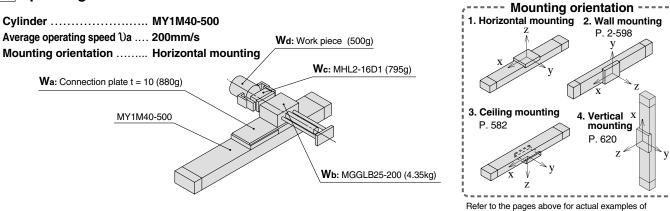

$MY1M/M_2$


MY1M/M3

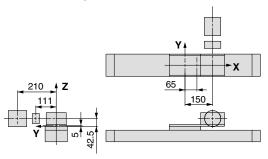

MY1M/m₁

MY1M/m₂

MY1M/m3



Series MY1M Model Selection


The following are steps for selection of the series MY1 best suited to your application.

Calculation of Guide Load Factor

1 Operating conditions

2 Load blocking

Mass and centre of gravity for each work piece

calculation for each orientation.

	Massa	Center of gravity						
Work piece no.	Mass m	X-axis Xn	Y-axis Yn	Z-axis Zn				
Wa	0.88kg	65mm	0mm	5mm				
Wb	4.35kg	150mm	0mm	42.5mm				
Wc	0.795kg	150mm	111mm	42.5mm				
Wd	0.5kg	150mm	210mm	42.5mm				

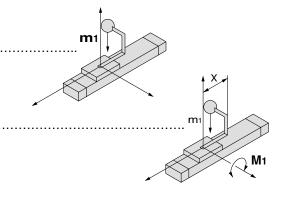
n = a, b, c, d

3 Composite centre of gravity calculation

$$\begin{aligned} & \mathbf{m}_1 = \Sigma mn \\ &= 0.88 + 4.35 + 0.795 + 0.5 = \mathbf{6.525kg} \\ & \mathbf{X} = \frac{1}{m_1} \times \Sigma \left(mn \times Xn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150 \right) = \mathbf{138.5mm} \\ & \mathbf{Y} = \frac{1}{m_1} \times \Sigma \left(mn \times yn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210 \right) = \mathbf{29.6mm} \\ & \mathbf{Z} = \frac{1}{m_1} \times \Sigma \left(mn \times zn \right) \\ &= \frac{1}{6.525} \left(0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5 \right) = \mathbf{37.4mm} \end{aligned}$$

4 Calculation of load factor for static load -

 m_1 max (from 1 of graph MY1M/ m_1) = 84 (kg)

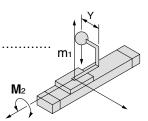

Load factor $\alpha_1 = m_1/m_1 \text{ max} = 6.525/84 = 0.08$

M₁: Moment

 M_1 max (from 2 of graph MY1M/ M_1) = 59 (N·m)

 $M_1 = m_1 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

Load factor $\alpha 2 = M_1/M_1 \text{ max} = 8.86/59 = 0.15$



Ma: Moment

 $M_2 \text{ max (from 3 of graph MY1M/M}_2) = 24 (N \cdot m) \dots$

 $M_3 = m_1 \times g \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 (N \cdot m)$

Load factor $\alpha_3 = M_2/M_2 \text{ max} = 1.89/24 = 0.08$

5 Calculation of load factor for dynamic moment

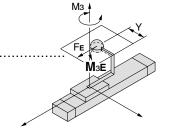
Equivalent load FE at impact

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 200 x 9.8 x 6.525 = 179.1 (N)

M1E: Moment

 M_1E max (from 4 of graph MY1M/ M_1 where 1.4va = 280mm/s) = 42.1 (N·m)

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 179.1 \times 37.4 \times 10^{-3} = 2.23 \text{ (N·m)}$$


Load factor $\alpha_4 = M_1 E/M_1 E \max = 2.23/42.1 = 0.05$

M3E: Moment

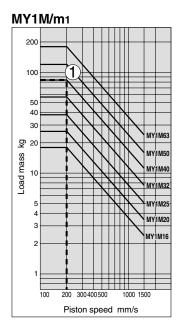
M₃E max (from 5 of graph MY1M/M₃ where $1.4\nu a = 280$ mm/s) = 5.7 (N·m)

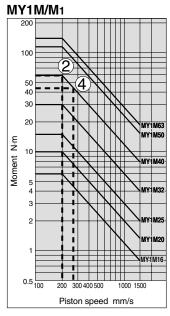
$$M_{3E} = \frac{1}{3}x \text{ Fe x Y} = \frac{1}{3}x 179.1 \times 29.6 \times 10^{-3} = 1.77 \text{ (N·m)}$$

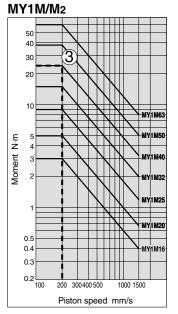
Load factor $\alpha_5 = M_3E/M_3E \text{ max} = 1.77/5.7 = 0.31$

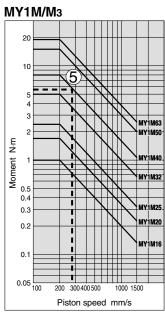
6 Sum and examination of guide load factors

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.67 \le 1$

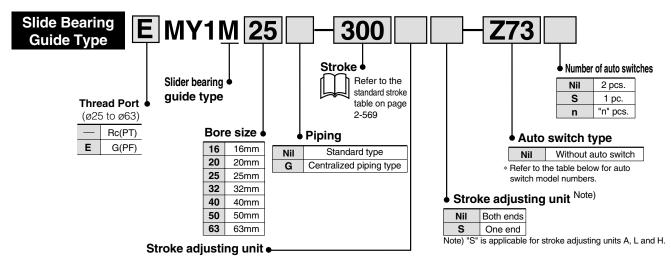

The above calculation is within the allowable value and the selected model can be used.


Select a separate shock absorber.


In an actual calculation, when the sum of guide load factors $\Sigma\alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


Load mass

Allowable moment



Mechanically Jointed Rodless Cylinder

Series MY1M

Slide Bearing Type/ø16, ø20, ø25, ø32, ø40, ø50, ø63

How to Order

Nil	Without adjusting unit
Α	With adjusting bolt
L	With low load shock absorber + adjusting bolt
Н	With high load shock absorber + adjusting bolt
AL	With one A unit and one L unit each
AH	With one A unit and one H unit each
LH	With one L unit and one H unit each

Shock absorbers for L and H units

On Ook as	Chicon about bord for a analy arms												
Bore si Unit no.		20	25	32	40	50	63						
L unit	RB	0806	RB1007	RB1	412	RB2015							
H unit	_	RB1007	RB1412	RB2015		RB2725							

Note) MY1M16 is not available with H unit.

Options

Bore size

Stroke adjusting unit numbers

Unit no. (mm)	16	20	25	32
A unit	MYM-A16A	MYM-A20A	MYM-A25A	MYM-A32A
L unit	MYM-A16L	MYM-A20L	MYM-A25L	MYM-A32L
H unit	_	MYM-A20H	MYM-A25H	MYM-A32H
Bore size (mm) Unit no.	40	50	63	
(mm)		50 MYM-A50A	63 MYM-A63A	
Unit no. (mm)	40			

Side support numbers

Type (mm)	16	20	25	32						
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A						
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B						
Bore size (mm)	40	50	63							
Side support A	MY-S	S40A	MY-S63A							
Side support B	MY-S	S40B	MY-S63B							
Refer to page 2-576 for detailed information on dimensions, etc.										

Applicable auto switches/

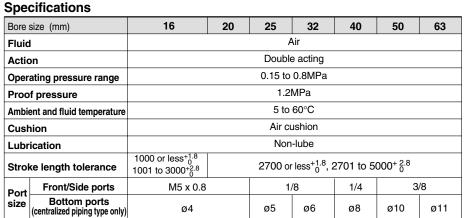
For ø16, ø20

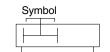
_																				
	A Special Electrical thought by the special and special entry that the special entry is a special and special entry.		lig.		Loa	Load voltage		Auto switch	Lead wire	lengt	h (m)*									
ype			Wiring				Electrical ent	ry direction	0.5	3	5	Appli								
F	lulicuon	Citily	뺼	(output)	D	С	AC	Perpendicular	In-line	(Nil)	(L)	(Z)	load							
itch		No							No	Oiva	24V	5V 12V	100V or less	A90V	A90	•	•	_	IC circuit	Relay,
Reed switch	_	Grommet	Vac	'es 3 wire NPN (equiv.)	2 wire		24V	12V	100V	A93V	A93	•	•	_	_	PLC				
Ree					ı	5V	_	A96V	A96	•	•	_	IC circuit	_						
				3 wire (NPN)				M9NV	M9N	•	•	_								
switch	_			3 wire (PNP)					M9PV	М9Р	•	•	_							
		Grommet	Vac	2 wire	241/	12V		M9BV	М9В	•	•	_		Relay,						
d state	Diagnostic		163	3 wire (NPN)	24 V	120	_	M9NWV	M9NW	•	•	0		PLC						
Solid	indication (2 colour)			3 wire (PNP)				M9PWV	M9PW	•	•	0								
	(indicator)			2 wire				M9BWV	M9BW	•	•	0								

For Ø25, Ø32, Ø40, Ø50, Ø63

			light		Loa	ad vol	tage	Auto switc	h models	Lead wir	e lengt	h (m)*					
Type	Special function	Electrical entry	==	Wiring (output)					Electrical entry direction		3	5		icable			
i–	TUTICUOTI	Cilliy	Indic	` ' '	D	С	AC	Perpendicular	In-line	(Nil)	(L)	(Z)		ad			
switch			Yes	3 wire (NPN equiv.)	_	5V	_	-	Z76	•	•	_	IC circuit	_			
d sw	_	Grommet		2 wire	241/	12V	100V	-	Z73	•	•	•	_	Relay,			
Reed			No	No				24V	5V 12V	100V or less	I	Z80	•	•	_	IC circuit	PLC
						3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC		
switch	-			3 wire (PNP)		12V 12V 5V 12V 12V	_	Y7PV	Y7P	•	•	0	circuit				
		Grommet	Voc	2 wire	24V			Y69B	Y59B	•	•	0	_	Relay,			
	Diagnostic		165	3 wire (NPN)	24 V		_	Y7NWV	Y7NW	•	•	0	IC	PLC			
Solid	indication (2 colour			3 wire (PNP)				Y7PWV	Y7PW	•	•	0	circuit				
	indicator)			2 wire				Y7BWV	Y7BW	•	•	0	_				
	*1	and wir	امما م	ath symb	ole. U	5m		Nil (Exam	nla) V504								

^{**} Solid state switches marked with a "O" symbol are produced upon receipt of order.


^{**} Solid state switches marked with a "O" symbol are produced upon receipt of order.



Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type

Series MY1M

Stroke adjusting unit specifications

Bore size (mm)	1	16		20			25			32			40			50			63	
Unit symbol	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration and shock absorber	With adjusting bolt	With RB 0806 + adjusting bolt	With adjusting bolt	With RB 0806 + adjusting bolt		With adjusting bolt	With RB 1007 + adjusting bolt	1 T	With adjusting bolt	With RB 1412 + adjusting bolt	+ .	With adjusting bolt	With RB 1412 + adjusting bolt	т.	With adjusting bolt	With RB 2015 + adjusting bolt	With RB 2725 + adjusting bolt	With adjusting bolt	With RB 2015 + adjusting bolt	With RB 2725 + adjusting bolt
Stroke fine adjusting range (mm)	0 to	-5.6	(0 to -6		0	to –11.	5	() to -12	2	0	to -16	i	C	to -20)	() to -2	5
Stroke adjusting range	Whe	/hen exceeding the stroke fine adjusting range: Use order made specifications "-X416" and "-X417". (Refer to page 2-645 for details.)																		

Shock absorber specifications

N	Model	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725		
Max. energy	y absorption (J)	2.9	5.9	19.6	58.8	147		
Stroke abs	sorption (mm)	6	7	12	15	25		
Max. impac	ct speed (mm/s)			1500				
Max. operating f	frequency (cycles/min)	80	70	45	25	10		
Spring	Extended	1.96	4.22	6.86	8.34	8.83		
force (N)	Compressed	4.22	6.86	15.98	20.50	20.01		
	perature range (°C)	5 to 60						

Piston speed

	•									
Bore	size (mm)	16 to 63								
Without stroke	adjusting unit	100 to 1000mm/s								
Stroke	A unit	100 to 1000mm/s Note 1)								
adjusting unit	L unit and H unit	100 to 1500mm/s Note 2)								

Note 1) Be aware that when the stroke adjusting range is increased by manipulating the adjusting bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 2-570, the **piston speed** should be **100** to **200mm per second**.

Note 2) For centralized piping, the piston speed is 100 to 1000mm per second. Note 3) Use at a speed within the absorption capacity range. Refer to page 2-570

Theoretical output

		<i>-</i>	P	•••			U	IIIL. IN
Bore	Piston		Oper	ating	press	ure (MPa)
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

1N = Approx. 0.102kgf, 1MPa = Approx.10.2kgf/cm²
Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Order made specifications

Refer to page 2-645 regarding order made specifications for series MY1M.

Standard strokes

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
16	100, 200, 300, 400, 500, 600, 700	3000
20, 25, 32, 40 50, 63	800, 900, 1000, 1200, 1400, 1600 1800, 2000	5000

^{*} Strokes are manufacturable in 1mm increments, up to the maximum stroke. However, when exceeding a 2000mm stroke, specify "-XB11" at the end of the model number. Refer to the order made specifications on page 2-644

Weights Unit: kg

Bore size	Basic	Additional weight	Side support weight (per set)	Stroke a	adjusting unit v (per unit)	weight	
(mm)	(mm) weight		Type A and B	A unit	L unit	H unit	
16	0.67	0.12	0.01	0.03	0.04	_	
20	1.11	0.16	0.02	0.04	0.05	0.08	
25	1.64	0.24	0.02	0.07	0.11	0.18	
32	3.27	0.38	0.04	0.14	0.23	0.39	
40	5.88	0.56	0.08	0.25	0.34	0.48	
50	10.06	0.77	0.08	0.36	0.51	0.81	
63	16.57	1.11	0.17	0.68	0.83	1.08	

Calculation method Example: MY1M25-300A

 Basic weight
 1.64kg
 Cylinder stroke
 300mm

 Additional weight
 0.24/50mm stroke
 1.64 + 0.24 x 300 ÷ 50 + 0.07 x 2 = Approx. 3.22kg

 Weight of A unit
 0.07kg

CE CIVIC

Cushion Capacity

Cushion selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

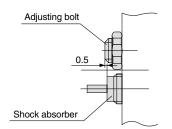
The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>
Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

L unit

Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

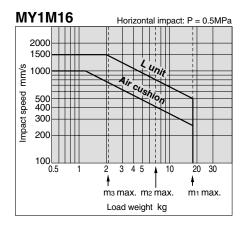

H unit

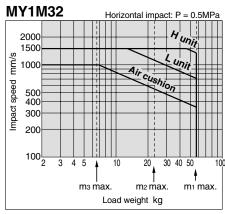
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

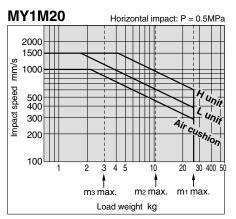
⚠ Caution

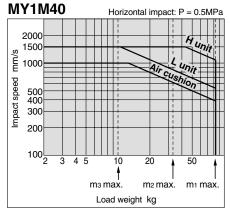
 Refer to the diagram below when using the adjusting bolt to perform stroke adjustment.

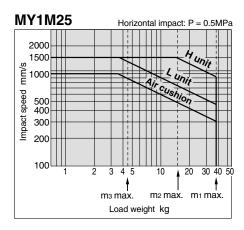
When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5mm from the shock absorber.

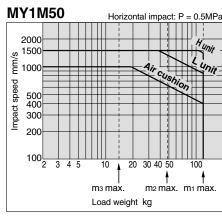

2. Do not use a shock absorber and air cushion together.

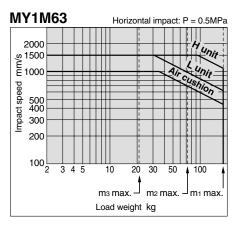

Air cushion stroke


Unit: mm


Bore size (mm)	Cushion stroke				
16	12				
20	15				
25	15				
32	19				
40	24				
50	30				
63	37				


Absorption capacity of air cushion and stroke adjusting units





Slide Bearing Guide Type

Stroke adjusting unit holding bolt tightening torque Unit: N·m

Boit agritoring	, .o. quo	OTHL IN-III		
Bore size (mm)	Unit	Tightening torque		
10	Α	0.6		
16	L	0.6		
	Α			
20	L	1.5		
	Н			
	Α	3.0		
25	L	3.0		
	Н	5.0		
	Α	5.0		
32	L	5.0		
	Н	12		
	Α			
40	L	12		
	Н			
	Α			
50	L	12		
	Н			
	Α			
63	L	24		
	Н			

Stroke adjusting unit lock plate holding bolt tightening torque Unit: N-m

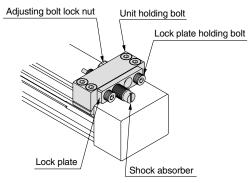
Bore size (mm)	Unit	Tightening torque		
25	L	1.2		
25	Н	3.3		
32	L	3.3		
32	Н	10		
40	L	3.3		
70	Н	10		

Calculation of absobed energy for stroke adjusting unit with shock absorber Unit Nim

aujusting t	ajusting unit with shock absorber Unit N·m									
	Horizontal	Vertical (downward)	Vertical (upward)							
Type of impact	m	U m	s, + m							
Kinetic energy E ₁		$\frac{1}{2}m\cdot \mathcal{V}^2$								
Thrust energy E ₂	F⋅s	F⋅s + m⋅g⋅s	F·s – m·g·s							
Absorbed energy		E1 + E2								

Symbols

- υ: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8m/s²)
- s: Shock absorber stroke (m)


Note) The speed of the impacting object is measured at the time of impact with the shock absorber.

Specific product precautions

⚠ Caution

Be careful not to get hands caught in the unit.

 When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be fastened by uniformly tightening the four unit holding bolts.

∧ Caution

Do not operate with the stroke adjusting unit fixed in an intermediate position.

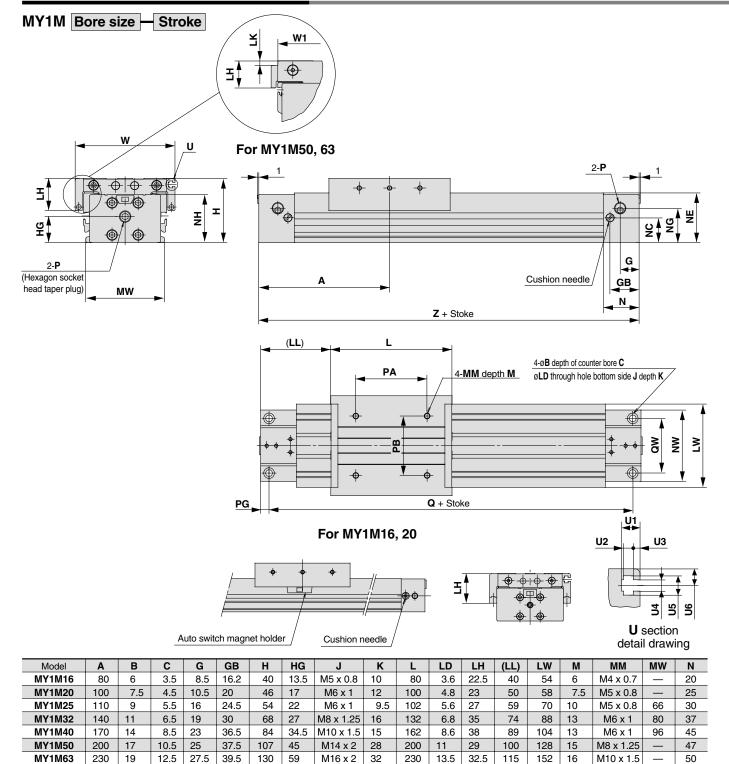
When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In this case, we recommend using the adjusting bolt mounting brackets available with order made specifications – X 416 and – X 417. For other lengths, consult SMC. (Refer to "Stroke adjustment unit holding bolt tightening torque".)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Re-tighten the lock nut.

<Stroke adjustment with shock absorber>

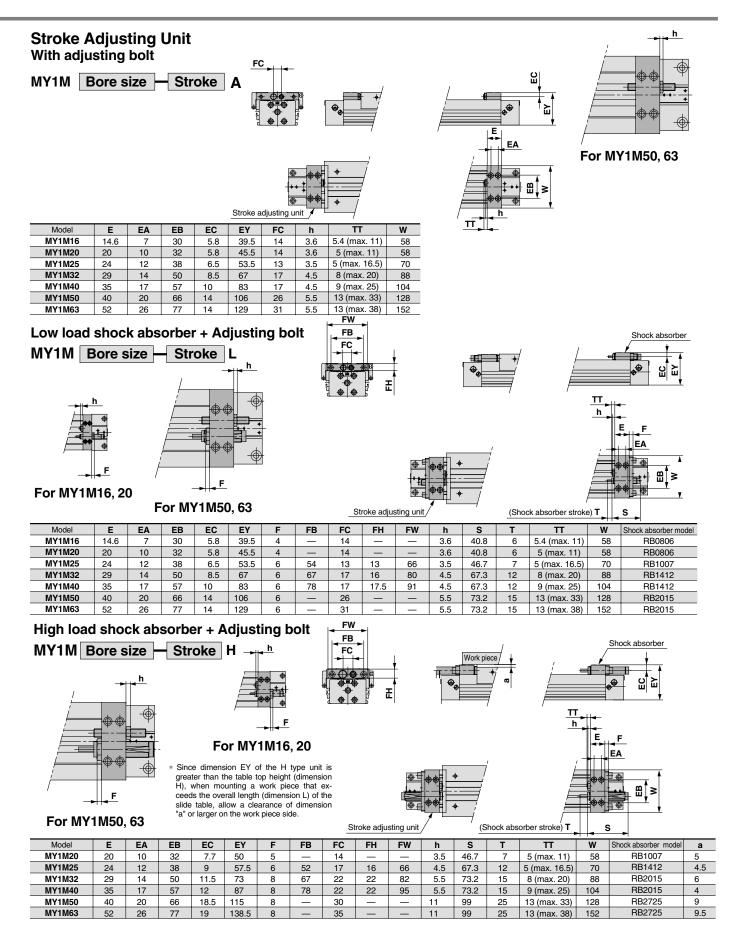
Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.


Take care not to over-tighten the holding bolts. (Except ø10 and ø20 L unit.) (Refer to "Stroke adjusting unit lock plate holding bolt tightening torque".)

Note)

Slight bending may occur in the lock plate due to tightening of the lock plate holding bolts. This is not a problem for the shock absorber and locking function.

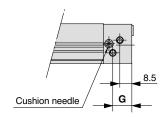
Standard Type \emptyset 16 to \emptyset 63

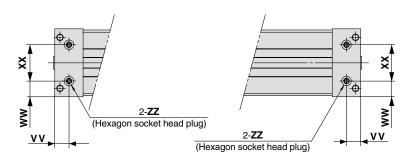

Model	NC	NE	NG	NH	NW	Р	PA	PB	PG	Q	QW	W	W1	LK	Z
MY1M16	13.5	28	13.5	27.7	56	M5 x 0.8	40	40	3.5	153	48	68	_	_	160
MY1M20	17	34	17	33.7	60	M5 x 0.8	50	40	4.5	191	45	72	_	_	200
MY1M25	21	41.8	29	40.5	60	1/8	60	50	7	206	46	84	_	_	220
MY1M32	26	52.3	34	50	74	1/8	80	60	8	264	60	102	_	_	280
MY1M40	32	65.3	42.5	63.5	94	1/4	100	80	9	322	72	118	_	_	340
MY1M50	43.5	84.5	54	83.5	118	3/8	120	90	10	380	90	144	128	2	400
MY1M63	56	104	68	105	142	3/8	140	110	12	436	110	168	152	5.5	460

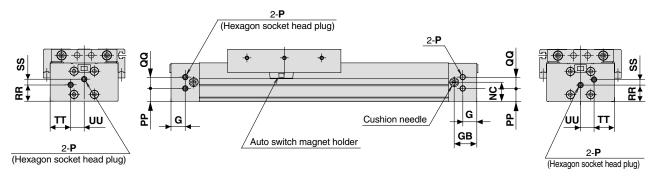
[&]quot;P" indicates cylinder supply ports. * The plug for MY1M16/20-P is a hexagon socket head plug.

U section detail dimensions

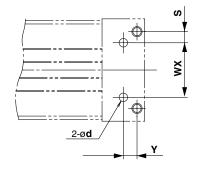
Model	U1	U2	U3	U4	U5	U6			
MY1M16	5.5	3	2	3.4	5.8	5			
MY1M20	5.5	3	2	3.4	5.8	5.5			
MY1M25	5.5	3	2	3.4	5.8	5			
MY1M32	5.5	3	2	3.4	5.8	7			
MY1M40	6.5	3.8	2	4.5	7.3	8			
MY1M50	6.5	3.8	2	4.5	7.3	8			
MY1M63	8.5	5	2.5	5.5	8.4	8			

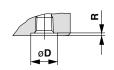



Centralized Piping Type Ø16, Ø20


Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions. Refer to pages 2-572 and 2-573 for details regarding dimensions etc.

MY1M Bore size G—Stroke


For MY1M16



Model	G	GB	NC	P	PP	QQ	RR	SS	TT	UU	٧٧	ww	XX	ZZ
MY1M16G	13.5	16.2	14	M5	7.5	9	11	2.5	15	14	10	13	30	M5
MY1M20G	12.5	20	17	M5	11.5	10	14.5	5	18	12	12.5	14	32	M5

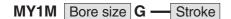
"P" indicates cylinder supply ports.

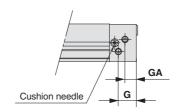
Bottom side (ZZ) piping (applicable O-ring)

Hole sizes for centralized piping on the bottom

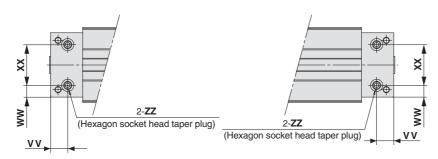
(Machine the mounting side to the dimensions below.)

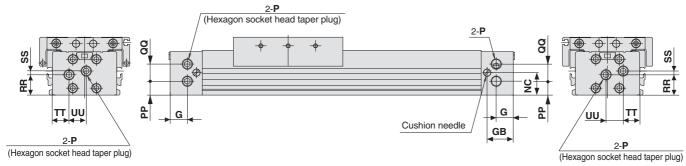
Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1M16G	30	6.5	9	4	8.4	1.1	C6
MY1M20G	32	8	6.5	4	8.4	1.1	Co




Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type

Series MY1M


Centralized Piping Type $\emptyset 25$ to $\emptyset 63$

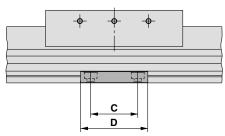

Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions. Refer to pages 2-572 and 2-573 for details regarding dimensions, etc.

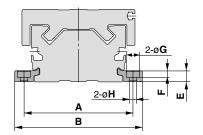

For MY1M50, 63

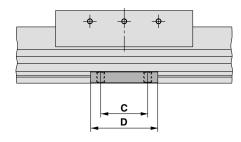
Model	G	GA	GB	NC	Р	PP	QQ	RR	SS	TT	UU	VV	ww	XX	ZZ
MY1M25G	16	_	24.5	21	1/8	13	15.5	19	3.5	15.5	16	16	11	38	1/16
MY1M32G	19	_	30	26	1/8	18	16	24	4	21	16	19	13	48	1/16
MY1M40G	23	_	36.5	32	1/4	16.5	26	25.5	10.5	22.5	24.5	23	20	54	1/8
MY1M50G	27	25	37.5	43.5	3/8	26	28	35	10	35	24	28	22	74	1/4
MY1M63G	29.5	27.5	39.5	60	3/8	42	30	49	13	43	28	30	25	92	1/4

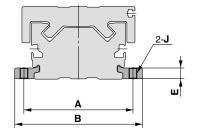
"P" indicates cylinder supply ports.

Hole sizes for centralized piping on the bottom

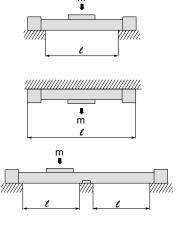

(Machine the mounting side to the dimensions below.)

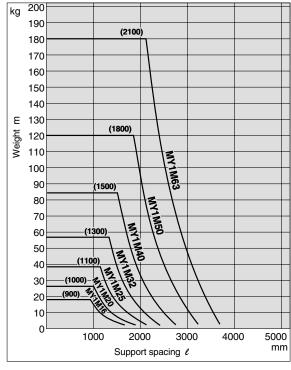

			··P···9 •		to the c	iii iie iisioi is below.)	
Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1M25G	38	9	4	6	11.4	1.1	C9
MY1M32G	48	11	6	0	11.4	1.1	C9
MY1M40G	54	14	9	8	13.4	1.1	C11.2
MY1M50G	74	18	8	10	17.5	1.1	C15
MY1M63G	92	18	9	10	17.5	1.1	CIS


Side Support

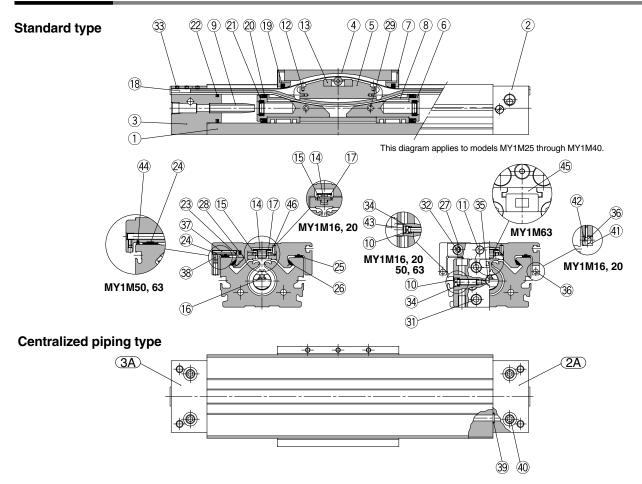

Side support A MY-S□A

Side support B MY-S□B


Model	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S16A	MY1M16	61	71.6	15	26	4.9	3	6.5	3.4	M4
MY-S20A	MY1M20	67	79.6	25	38	6.4	4	8	4.5	M5
MY-S25A	MY1M25	81	95	35	50	8	5	9.5	5.5	M6
MY-S32A	MY1M32	100	118	45	64	11.7	6	11	6.6	M8
MY-S40A	MY1M40	120	142	55	90	14.8	8.5	11	_	M10
IVI 1-340B	MY1M50	142	164	25	80	14.8	6.5	14	9	M10
MY-S63A	MY1M63	172	202	70	100	18.3	10.5	17.5	11.5	M12


Guide for Using Side Supports

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.


- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

Mechanically Jointed Rodless Cylinder Slide Bearing Guide Type

Construction

Parts list

raits	IISL		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover R	Aluminum alloy	Hard anodized
2A	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover L	Aluminum alloy	Hard anodized
ЗА	Head cover WL	Aluminum alloy	Hard anodized
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	End cover	Special resin	
8	Wear ring	Special resin	
9	Cushion ring	Brass	
10	Cushion needle	Rolled steel	Nickel plated
11	Stopper	Carbon steel	
12	Belt separator	Special resin	
13	Coupler	Sintered iron material	
14	Guide roller	Special resin	
15	Guide roller shaft	Stainless steel	
18	Belt clamp	Special resin	
23	Adjusting arm	Aluminum alloy	Hard anodized
24	Bearing R	Special resin	
	·	·	

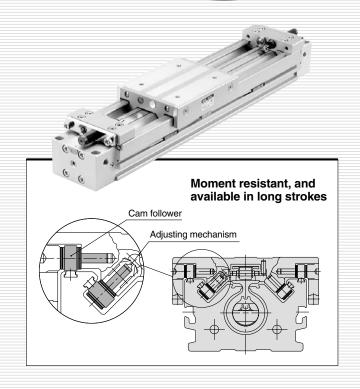
Parts list

No.	Description	Material	Note
25	Bearing L	Special resin	
26	Bearing S	Special resin	
27	Spacer	Stainless steel	
28	Backup spring	Stainless steel	
29	Spring pin	Carbon tool steel	Black zinc chromated
31	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
32	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
33	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated/Nickel plated
35	Hexagon socket head taper plug	Carbon steel	Nickel plated
36	Magnet	Rare earth magnet	
37	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
38	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
40	Hexagon socket head taper plug	Carbon steel	Nickel plated
41	Magnet holder	Special resin	(ø16, ø20)
42	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
43	Type CR retaining ring	Spring steel	(except ø25 to ø40)
44	Side scraper	Special resin	(ø50, ø63)
45	Head plate	Aluminum alloy	Hard anodized (ø63)
46	Parallel pin	Stainless steel	(except ø16, ø20)

Seal list

Ocui	1131									
No.	Description	Material	Qty.	MY1M16	MY1M20	MY1M25	MY1M32	MY1M40	MY1M50	MY1M63
16	Seal belt	Special resin	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke	MY50-16A-Stroke	MY63-16A-Stroke
Note) 17	Dust seal band	Stainless steel	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
19	Scraper	NBR	2	MYM16-15AK0500	MYM20-15AK0501	MYM25-15AA5903	MYM32-15AA5904	MYM40-15AA5905	MYM50-15AK0502	MYM63-15AK0503
20	Piston seal	NBR	2							
21	Cushion seal	NBR	2							
22	Tube gasket	NBR	2							
34	O-ring	NBR	2							
39	O-ring	NBR	4							

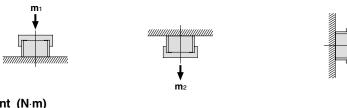
Note) Two types of dust seal band are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ③.

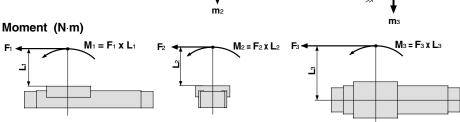

(A) Black zinc chromated—>MY□□-16B-Stroke (B) Nickel plated—>MY□□-16BW-Stroke

ALMOTION

Before Operating Series MY1C

Maximum Allowable Moment/Maximum Allowable Load


Model	Bore size	Max. allo	wable mom	ent (N·m)	Max. allowable load (kg)			
Wiodei	(mm)	M 1	M 2	Мз	m 1	m 2	m 3	
	16	6.0	3.0	2.0	18	7	2.1	
	20	10	5.0	3.0	25	10	3	
	25	15	8.5	5.0	35	14	4.2	
MY1C	32	30	14	10	49	21	6	
	40	60	23	20	68	30	8.2	
	50	115	35	35	93	42	11.5	
	63	150	50	50	130	60	16	


The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum allowable moment

Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.

Load (kg)

<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of impact with stopper) (3) must be examined for the selection calculations.
- * To evaluate, use \mathcal{V} a (average speed) for (1) and (2), and \mathcal{V} (impact speed \mathcal{V} = 1.4 \mathcal{V} a) for (3). Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper). Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

2. Reference formulae [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

υ : Impact speed (mm/s)

F: Load (N)

L₁: Distance to the load's center of gravity (m)

 $\label{eq:Fe} \textit{Fe}: Load \ equivalent \ to \ impact \ \ (at \ impact \ with \ stopper) \ \ (N) \quad \textit{Me}: Dynamic \ moment \ \ (N\cdot m)$

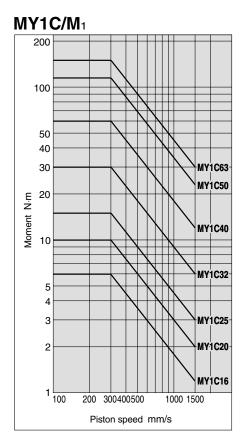
Va: Average speed (mm/s)

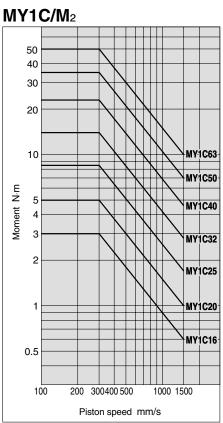
: Gravitational acceleration (9.8m/s²)

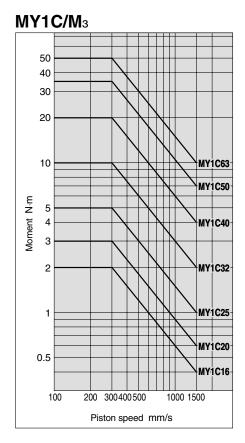
M : Static moment (N·m)

$$\begin{split} \mathfrak{V} &= 1.4 \mathfrak{Va} \text{ (mm/s)} & \quad \mathsf{FE} = \frac{1.4}{100} \, \, \mathfrak{Va} \cdot \mathsf{g} \cdot \mathsf{m} \\ & \therefore \mathsf{ME} = \frac{1}{3} \, \cdot \, \mathsf{FE} \cdot \mathsf{L}_1 = 0.05 \mathfrak{Va} \, \mathsf{m} \, \, \mathsf{L}_1 \, \, \, (\mathsf{N} \cdot \mathsf{m}) \end{split}$$

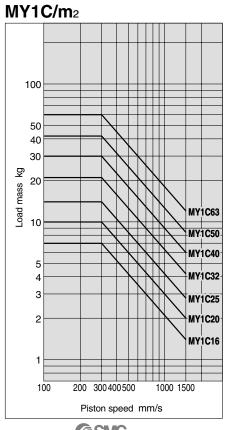
Note 4) $\frac{1.4}{100}$ Va is a dimensionless coefficient for calculating impact force.

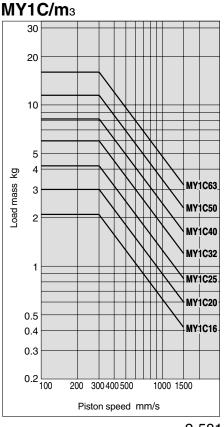

Note 5) Average load coefficient (= $\frac{1}{3}$):


This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.


3. Refer to pages 2-582 and 2-583 for detailed selection procedures.

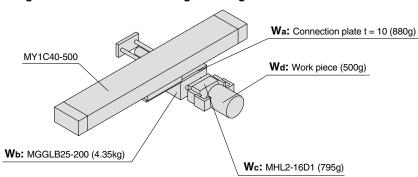
Maximum allowable load

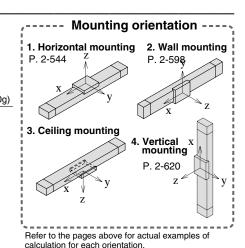

Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.



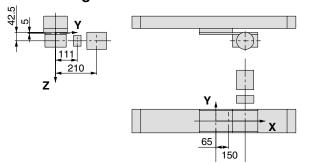
MY1C/m₁ 200 100 50 40 30 MY1C63 Load mass kg 00 01 MY1C50 MY1C40 MY1C32 MY1C25 MY1C20 5 MY1C16 3 100 200 300 400 500 1000 1500 Piston speed mm/s

Series MY1C Model Selection


The following are steps for selection of the series MY1 best suited to your application.


Calculation of Guide Load Factor

1 Operating conditions


Cylinder MY1H40-500
Average operating speed va ... 300mm/s

Mounting orientation Ceiling mounting

2 Load blocking

Mass and centre of gravity for each work piece

Work	Mass	С	enter of gravi	ty
piece no. Wn	Mass mn - 0.88kg 4.35kg 0.795kg 0.5kg	X-axis Xn	Y-axis Yn	Z-axis Zn
Wa	0.88kg	65mm	0mm	5mm
Wb	4.35kg	150mm	0mm	42.5mm
Wc	0.795kg	150mm	111mm	42.5mm
Wd	0.5kg	150mm	210mm	42.5mm

n = a, b, c, d

3 Composite centre of gravity calculation

$$\mathbf{m}_2 = \Sigma m_1$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525kg**

$$\mathbf{X} = \frac{1}{m_2} \times \Sigma (m_1 \times x_1)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = \mathbf{138.5mm}$$

$$\mathbf{Y} = \frac{1}{m_2} \times \Sigma (\text{mn x yn})$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = \mathbf{29.6mm}$$

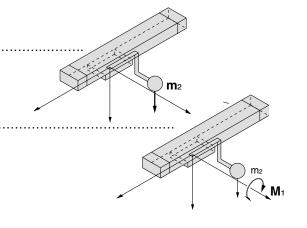
$$Z = \frac{1}{m_2} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{mm}$$

4 Calculation of load factor for static load

m₂: Mass

 m_2 max (from 1 of graph MY1C/ m_2) = 30 (kg)

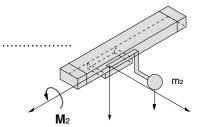

Load factor $\alpha_1 = m_2 / m_2 \max = 6.525/30 = 0.22$

M₁: Moment

 M_1 max (from 2 of graph MY1C/ M_1) = 60 (N·m)

 $M_1 = m_2 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

Load factor $\alpha_2 = M_1/M_1 \text{ max} = 8.86/60 = 0.15$



M₂: Moment

 M_2 max (from 3 of graph MY1C/ M_2) = 23.0 (N·m)

 $M_2 = m_2 \times g \times X = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 \text{ (N·m)}$

Load factor $\alpha_3 = M_2/M_2 \text{ max} = 1.89/23.0 = 0.08$

5 Calculation of load factor for dynamic moment

Equivalent load FE at impact

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 300 x 9.8 x 6.525 = 268.6 (N)

M₁E: Moment

M₁E max (from 4 of graph MY1C/M₁ where 1.4va = 420mm/s) = 42.9 (N·m)

$$M_{1}E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$


Load factor OL4 = M1E/M1E max = 3.35/42.9 = 0.08

M₃E max (from 5 of graph MY1C/M₃ where 1.4 va = 420 mm/s = 14.3 (N·m)

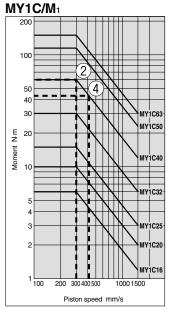
$$M_{3}E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$$

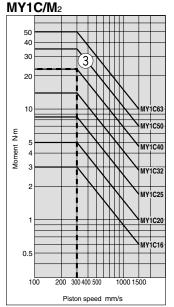
Load factor $\alpha_5 = M_3 E/M_3 E$ max = 2.65/14.3 = **0.19**

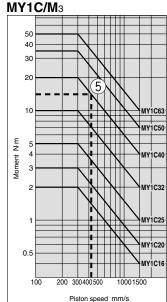
6 Sum and examination of guide load factors

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.89 \le 1$

The above calculation is within the allowable value and the selected model can be used.

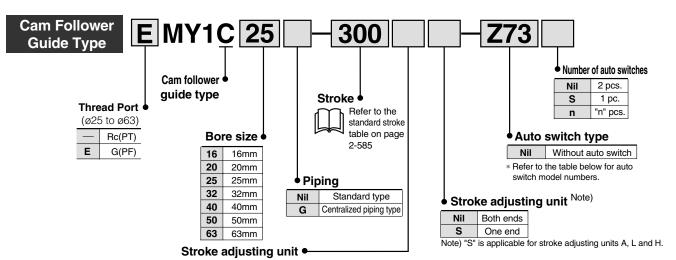

Select a separate shock absorber.


In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


Load mass

MY1 C/m₂ 100 50 40 30 10 MY1C63 MY1C32 3 MY1C32 MY1C25 MY1C20 MY1C16 11 100 200 300 400 500 Piston speed mm/s

Allowable moment



Mechanically Jointed Rodless Cylinder

Cam Follower Guide Type/ø16, ø20, ø25, ø32, ø40, ø50,

How to Order

Nil	Without adjusting unit						
Α	With adjusting bolt						
L	With low load shock absorber + adjusting bolt						
Н	With high load shock absorber + adjusting bolt						
AL	With one A unit and one L unit each						
AH	With one A unit and one H unit each						
LH	With one L unit and one H unit each						

Shock absorbers for L and H units

Bore size (mm) Unit no.	16	20	25	32	40	50	63	
L unit	RBC	0806	RB1007	RB1412		RB2015		
H unit	_	RB1007	RB1412	RB2	2015	RB2725		

Note) MY1C16 is not available with H unit.

Options

Bore size

Sroke adjusting unit numbers

Unit type (mm)	16	20	25	32
A unit	MYM-A16A	MYM-A20A	MYM-A25A	MYM-A32A
L unit	MYM-A16L	MYM-A20L	MYM-A25L	MYM-A32L
H unit	_	MYM-A20H	MYM-A25H	MYM-A32H
Bore size (mm) Unit type	40	50	63	
(mm)	40 MYM-A40A	50 MYM-A50A	63 MYM-A63A	
Unit type (mm)				

Side support numbers

Bore size (mm)	16	20	25	32		
Side support A	MY-S16A	MY-S20A	MY-S25A	MY-S32A		
Side support B	MY-S16B	MY-S20B	MY-S25B	MY-S32B		
Bore size (mm)	40	50	63			
Side support A	MY-S	540A	MY-S63A			
Side support B	MY-S	S40B	MY-S63B			
Refer to page 2-502 for detailed information on dimensions, etc.						

Applicable auto switches/

For a16 a20

	ושוט	0 , 0	20											
_	0	E	Indicator light	NAC of the second	Loa	d vo	Itage	Auto switch	n models	Lead wire	lengt	h (m)*		
Type	Special function	Electrical entry	ator	Wiring (output)	-			Electrical enti	ry direction	0.5	3	5	Appli	
_	Turicuon	Citily	ngi	(output)	D	С	AC	Perpendicular	In-line	(Nil)	(L)	(Z)	100	au
itch			No		041/	5V 12V	100V or less	A90V	A90	•	•	_	IC circuit	Relay,
Reed switch	_	Grommet	Yes	2 wire	24V	12V	100V	A93V	A93	•	•	_	ı	PLĆ
Ree				3 wire (NPN equiv.)	_	5V	_	A96V	A96	•	•	_	IC circuit	_
				3 wire (NPN)				мэнч	M9N	•	•	_		
switch	_			3 wire (PNP)				M9PV	М9Р	•	•	_		
		Grommet	Vac	2 wire	24V	10\/		M9BV	М9В	•	•	_		Relay,
Solid state	Diagnostic		163	3 wire (NPN)	244	121	_	M9NWV	M9NW	•	•	0		PLC
Soli	indication (2 colour			3 wire (PNP)				M9PWV	M9PW	•	•	0		
	indicator)			2 wire				M9BWV	M9BW	•	•	0		

^{*} Lead wire length symbols: 0.5m...... Nil (Example) M9NW 3m......L M9NWL
5m.....Z M9NWZ

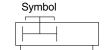
** Solid state switches marked with a "O" symbol are produced upon receipt of order.

For Ø25, Ø32, Ø40, Ø50, Ø63

a)	0	Floridad	Indicator light	VAC at a se	Lo	ad vo	ltage	Auto switc	h models	Lead wir	e lengt	h (m)*		
Type	Special function		ator	Wiring (output)				Electrical ent	ry direction	0.5	3	5		cable
_	TUTICUOTI	Citiy	Indic	(output)	D	С	AC	Perpendicular	In-line	(Nil)	(L)	(Z)	lo	ad
itch			Yes	3 wire (NPN equiv.)	_	5V	_	_	Z 76	•	•	_	IC circuit	_
Reed switch	_	Grommet	res	0	041/	12V	100V	_	Z73	•	•	•	_	Relay,
Ree			No	2 wire	24V	5V 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC
				3 wire (NPN)		5V		Y69A	Y59A	•	•	0	IC	
switch	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit	
state sv		Grommet	Vaa	2 wire	۵.,,	12V		Y69B	Y59B	•	•	0	-	Relay,
	Diagnostic indication		res	3 wire (NPN)	24V	5V	_	Y7NWV	Y7NW	•	•	0	IC	PLC
Solid	(2 colour			3 wire (PNP)		12V		Y7PWV	Y7PW	•	•	0	circuit	
	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_	

* Lead wire length symbols: 0.5m Nil (Example) Y59A 3m L 5m Z Y59AL Y59AZ

^{**} Solid state switches marked with a "O" symbol are produced upon receipt of order.


Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

Series MY1C

Specifications

	Bore size (mm)	16	20	25	32	40	50	63			
Flu	id	Air									
Act	tion	Double acting									
Ope	erating pressure range	0.1 to 0.8MPa									
Pro	of pressure		1.2MPa								
Amb	ient and fluid temperature	5 to 60°C									
Cus	shion	Air cushion									
Luk	orication	Non-lube									
Stroke length tolerance		1000 or less+ $\frac{1}{0}$.8 1001 to 3000+ $\frac{2}{0}$.8 2700 or less+ $\frac{1}{0}$.8, 2701 to 5000+ $\frac{2}{0}$.8					000+2.8				
Front/Side ports		M5 x 0.8		1,	/8	1/4	3	/8			
Bottom ports (centralized piping type only)		ø4		ø5	ø6	ø8	ø10	ø11			

Stroke adjusting unit specifications

			•																	
Bore size (mm)	1	6		20			25			32			40			50			63	
Unit symbol	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration and shock absorber	With adjusting bolt	With RB 0806 + adjusting bolt	With adjusting bolt	With RB 0806 + adjusting bolt	With RB 1007 + adjusting bolt	With adjusting bolt		With RB 1412 + adjusting bolt	With adjusting bolt	With RB 1412 + adjusting bolt		With adjusting bolt	With RB 1412 + adjusting bolt		With adjusting bolt	With RB 2015 + adjusting bolt	With RB 2725 + adjusting bolt	With adjusting bolt	With RB 2015 + adjusting bolt	With RB 2725 + adjusting bolt
Stroke fine adjusting range (mm)	0 to	-5.6	(0 to –6		0 1	to –11.	5	() to -12	2	C) to -16	6	() to -20	0	(0 to -25	5
Stroke adjusting range	Whe	When exceeding the stroke fine adjusting range: Use order made specifications "-X416" and "-X417". (Refer to page 2-645 for details.)																		

Shock absorber specifications

M	lodel	RB 0806	RB 1007	RB 1412	RB 2015	RB 2725			
Max. energy	absorption (J)	2.9	5.9	19.6	58.8	147			
Stroke abso	orption (mm)	6	7	12	15	25			
Max. impact	speed (mm/s)	1500							
Max. operating fr	equency (cycles/min)	80	70	45	25	10			
Spring	Extended	1.96	4.22	6.86	8.34	8.83			
force (N)			6.86	15.98	20.50	20.01			
Operating temp	perature range (°C)			5 to 60					

Unit: N

Piston speed

Bore si	ze (mm)	16 to 63				
Without stroke	adjusting unit	100 to 1000mm/s				
Stroke	A unit	100 to 1000mm/s Note 1)				
adjusting unit L unit and H unit		100 to 1500mm/s Note 2)				

Note 1) Be aware that when the stroke adjusting range is increased by manipulating the adjusting bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 2-586, the piston speed should be 100 to 200mm per second.

Note 2) For centralized piping, the piston speed is 100 to 1000mm per second. Note 3) Use at a speed within the absorption capacity range. Refer to page 2-586

Theoretical output

				•				1110. 14		
Bore	Piston	(Opera	perating pressure (MPa)						
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8		
16	200	40	60	80	100	120	140	160		
20	314	62	94	125	157	188	219	251		
25	490	98	147	196	245	294	343	392		
32	804	161	241	322	402	483	563	643		
40	1256	251	377	502	628	754	879	1005		
50	1962	392	588	784	981	1177	1373	1569		
63	3115	623	934	1246	1557	1869	2180	2492		

1N = Approx. 0.102kgf, 1MPa = Approx.10.2kgf/cm² Note) Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Standard strokes

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
16	100, 200, 300, 400, 500, 600, 700	3000
20, 25, 32, 40 50, 63	800, 900, 1000, 1200, 1400, 1600 1800, 2000	5000

* Strokes are manufacturable in 1mm increments, up to the maximum stroke. However, when exceeding a 2000mm stroke, specify "-XB11" at the end of the model number. Refer to the order made specifications on page 2-644

Weights

						Orma ng			
Bore size	Basic	Additional weight	Side support weight (per set)	Stroke a	Stroke adjusting unit weight (per unit)				
(mm)	weight	per 50mm of stroke	Type A and B	A unit	L unit	H unit			
16	0.67	0.12	0.01	0.03	0.04	_			
20	1.06	0.15	0.02	0.04	0.05	0.08			
25	1.58	0.24	0.02	0.07	0.11	0.18			
32	3.14	0.37	0.04	0.14	0.23	0.39			
40	5.60	0.52	0.08	0.25	0.34	0.48			
50	10.14	0.76	0.08	0.36	0.51	0.81			
63	16.67	1.10	0.17	0.68	0.83	1.08			

Order made specifications

Refer to page 2-645 regarding order made specifications for series MY1C.

Calculation method Example: MY1C25-300A

Basic weight 1.58kg Weight of A unit 0.07kg

Cylinder stroke 300mm $1.58 + 0.24 \times 300 \div 50 + 0.07 \times 2 = Approx. 3.16$ kg

Unit: ka

Cushion Capacity

Cushion selection

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

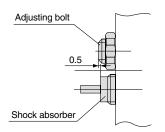
The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

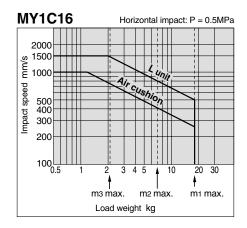
L unit

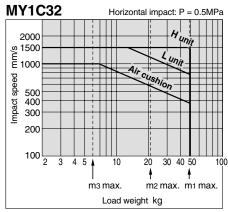
Use this unit when the cylinder stroke is outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

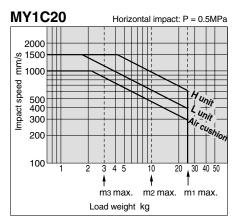

H unit

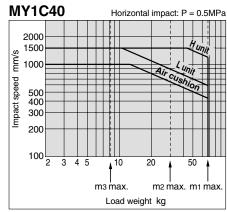
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

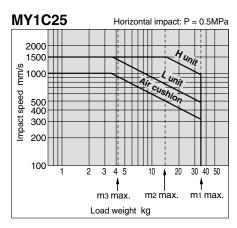
⚠ Caution

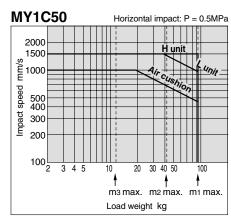

 Refer to the diagram below when using the adjusting bolt to perform stroke adjustment.

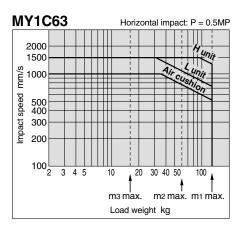

When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5mm from the shock absorber.




Do not use a shock absorber and air cushion together.


Absorption capacity of air cushion and stroke adjusting units





Air cushion stroke Bore size (mm) Cu

Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24
50	30
63	37

Unit: mm

Mechanically Jointed Rodless Cylinder

Cam Follower Guide Type

Stroke adjusting unit holding bolt tightening torque

boil lighterin	ig torque	Unit: N·m
Bore size (mm)	Unit	Tightening torque
16	Α	0.6
10	L	0.6
	Α	
20	L	1.5
	Н	
	Α	3.0
25	L	3.0
	Н	5.0
	Α	5.0
32	L	5.0
	Н	12
	Α	
40	L	12
	Н	
	Α	
50	L	12
	Н	
	Α	
63	L	24
	Н	

Stroke adjusting unit lock plate holding bolt tightening torque Unit: N·m

Bore size (mm)	Unit	Tightening torque
05	L	1.2
25	Н	3.3
20	L	3.3
32	Н	10
40	L	3.3
40	Н	10

Calculation of absorbed energy for stroke adjusting unit with shock absorber Unit No

aujusting unit with shock absorber Unit: N·m											
	Horizontal	Vertical (downward)	Vertical (upward)								
Type of impact	<u>s</u>	U m s	s _i								
Kinetic energy E ₁		$\frac{1}{2}$ m· V^2									
Thrust energy E2	F⋅s	F⋅s + m⋅g⋅s	F·s – m·g·s								
Absorbed energy E		E1 + E2									

Symbols


- \mathfrak{V} : Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8m/s²)
- s: Shock absorber stroke (m)
- Note) The speed of the impacting object is measured at the time of impact with the shock absorber.

△Specific product precautions

∧Caution

Be careful not to get hands caught in the

· When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be fastened by uniformly tightening the four unit holding bolts.

Caution

Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In this case, we recommend using the adjusting bolt mounting brackets available with order made specifications - X 416 and - X 417. For other lengths, consult SMC. (Refer to "Stroke adjustment unit holding bolt tightening torque".)

<Stroke adjustment with adjusting bolt>

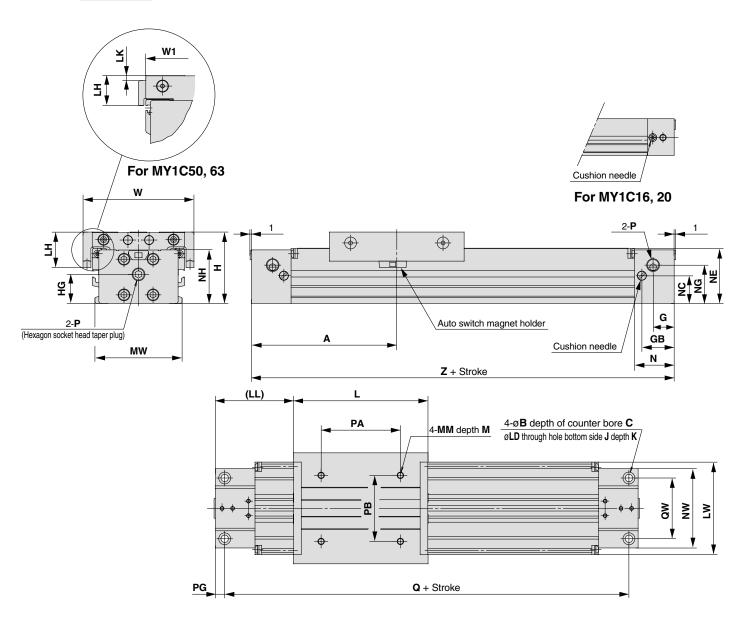
Loosen the adjusting bolt lock nut, and adjust the stroke from the lock plate side using a hexagon wrench. Re-tighten the lock nut.

<Stroke adjustment with shock absorber>

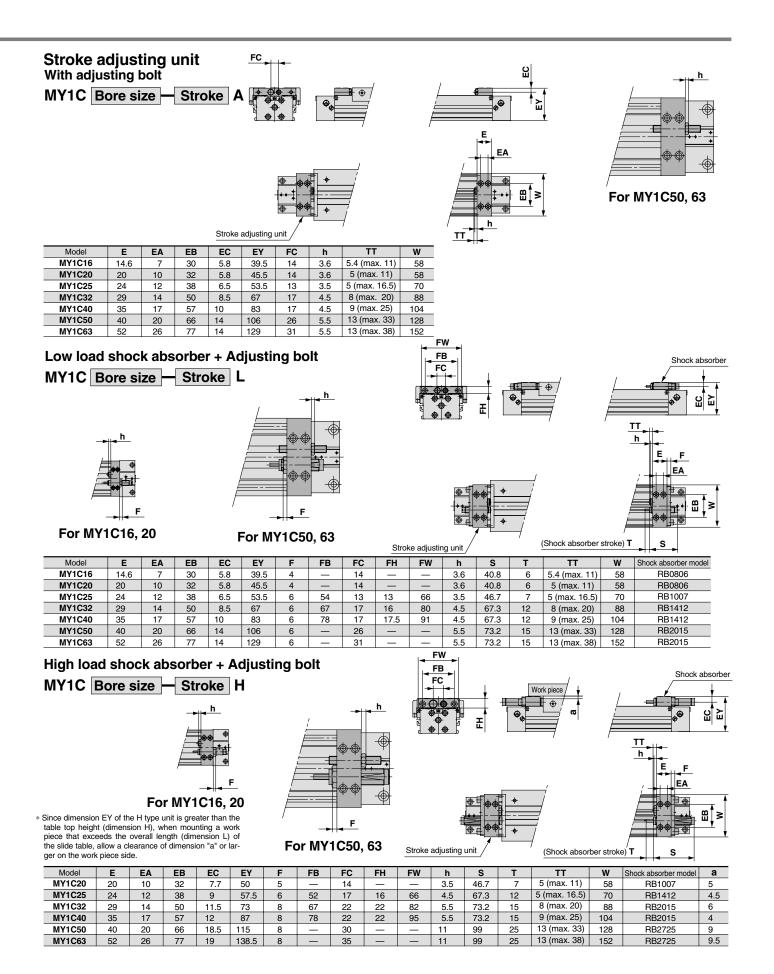
Loosen the two lock plate holding bolts, turn the shock absorber and adjust the stroke. Then, uniformly tighten the lock plate holding bolts to secure the shock absorber.

Take care not to over-tighten the holding bolts. (Except ø16, ø20, ø50, ø63)

(Refer to "Stroke adjusting unit lock plate holding bolt tightening torque".)

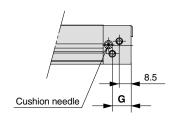

Slight bending may occur in the lock plate due to tightening of the lock plate holding bolts. This is not a problem for the shock absorber and locking function.

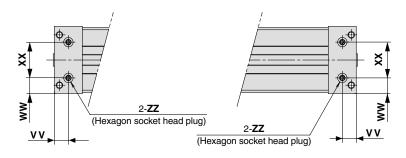
Standard Type Ø16 to Ø63

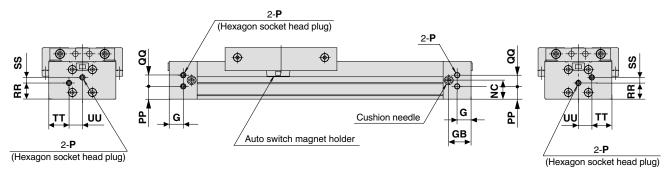


Model	Α	В	С	G	GB	Н	HG	J	K	L	LD	LH	LK	(LL)	LW	М	MM	MW
MY1C16	80	6	3.5	8.5	16.2	40	13.5	M5	10	80	3.6	22.5		40	54	6	M4	_
MY1C20	100	7.5	4.5	10.5	20	46	17	M6	12	100	4.8	23		50	58	7.5	M5	_
MY1C25	110	9	5.5	16	24.5	54	22	M6	9.5	102	5.6	27		59	70	10	M5	66
MY1C32	140	11	6.5	19	30	68	27	M8	16	132	6.8	35		74	88	13	M6	80
MY1C40	170	14	8.5	23	36.5	84	34.5	M10	15	162	8.6	38	_	89	104	13	M6	96
MY1C50	200	17	10.5	25	37.5	107	45	M14	28	200	11	29	2	100	128	15	M8	_
MY1C63	230	19	12.5	27.5	39.5	130	59	M16	32	230	13.5	32.5	5.5	115	152	16	M10	_

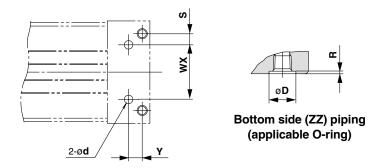
Model	N	NC	NE	NG	NH	NW	Р	PA	PB	PG	Q	QW	W	W1	Z
MY1C16	20	13.5	28	13.5	27.7	56	M5	40	40	3.5	153	48	68	_	160
MY1C20	25	17	34	17	33.7	60	M5	50	40	4.5	191	45	72	_	200
MY1C25	30	21	41.8	29	40.5	60	1/8	60	50	7	206	46	84	_	220
MY1C32	37	26	52.3	34	50	74	1/8	80	60	8	264	60	102	_	280
MY1C40	45	32	65.3	42.5	63.5	94	1/4	100	80	9	322	72	118	_	340
MY1C50	47	43.5	84.5	54	83.5	118	3/8	120	90	10	380	90	144	128	400
MY1C63	50	56	104	68	105	142	3/8	140	110	12	436	110	168	152	460


"P" indicates cylinder supply ports. * The plug for MY1C16/20-P is a hexagon socket head plug.


Centralized Piping Type $\emptyset 16$ to $\emptyset 20$


Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions. Refer to pages 2-588 and 2-589 for details regarding dimensions, etc.

MY1C Bore size G — Stroke


For MY1C16

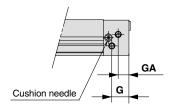
Model	G	GB	NC	Р	PP	QQ	RR	SS	TT	UU	٧٧	ww	XX	ZZ
MY1C16G	13.5	16.2	14	M5	7.5	9	11	2.5	15	14	10	13	30	M5
MY1C20G	12.5	20	17	M5	11.5	10	14.5	5	18	12	12.5	14	32	M5

"P" indicates cylinder supply ports.

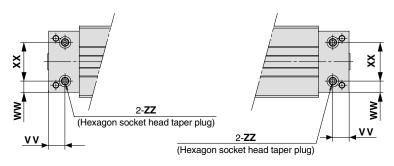
Hole sizes for centralized piping on the bottom

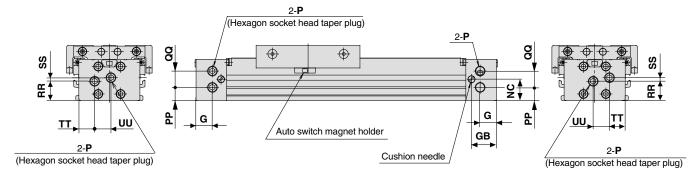
(Machine the mounting side to the dimensions below.)

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1C16G	30	6.5	9	4	8.4	1.1	Ce
MY1C20G	32	8	6.5	4	8.4	1.1	1 6

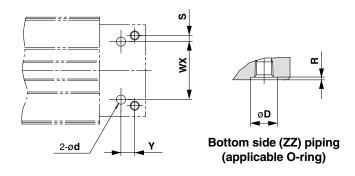

Mechanically Jointed Rodless Cylinder Cam Follower Guide Type

Series MY1C


Centralized Piping Type $\emptyset 25$ to $\emptyset 63$


Refer to page 2-648 regarding centralized piping port variations.
Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions.
Refer to pages 2-588 and 2-589 for details regarding dimensions, etc.

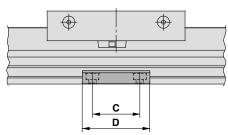
MY1C Bore size G— Stroke

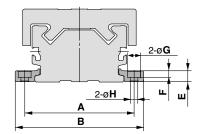

For MY1C50, 63

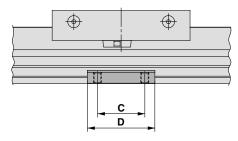
Model	G	GA	GB	NC	P	PP	QQ	RR	SS	TT	UU	VV	ww	XX	ZZ
MY1C25G	16	_	24.5	21	1/8	13	16	19	3.5	15.5	16	16	11	38	1/16
MY1C32G	19	_	30	26	1/8	18	16	24	4	21	16	19	13	48	1/16
MY1C40G	23	_	36.5	32	1/4	16.5	26	25.5	10.5	22.5	24.5	23	20	54	1/8
MY1C50G	27	25	37.5	43.5	3/8	26	28	35	10	35	24	28	22	74	1/4
MY1C63G	29.5	27.5	39.5	60	3/8	42	30	49	13	43	28	30	25	92	1/4

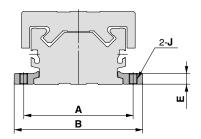
[&]quot;P" indicates cylinder supply ports.

Hole sizes for centralized piping on the bottom

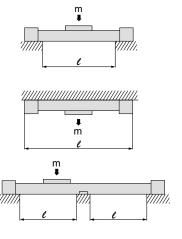

(Machine the mounting side to the dimensions below.)

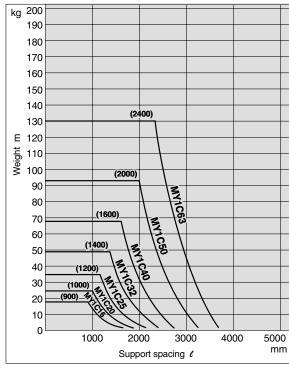

Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1C25G	38	9	4	6	11.4	1.1	C9
MY1C32G	48	11	6	6	11.4	1.1	Ca
MY1C40G	54	14	9	8	13.4	1.1	C11.2
MY1C50G	74	18	8	10	17.5	1.1	C15
MY1C63G	92	18	9	10	17.5	1.1	C15


Side Support


Side support A MY-S□A

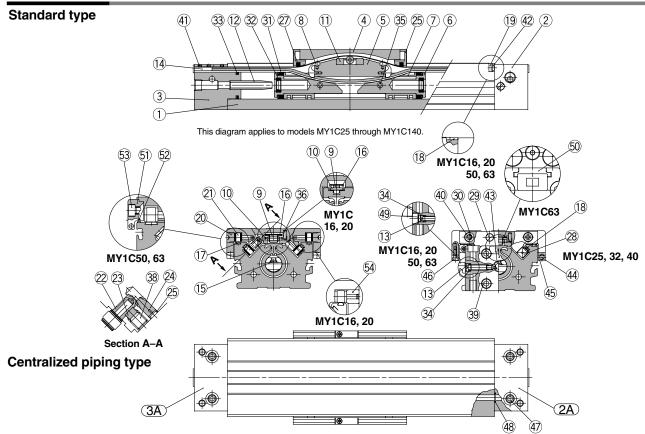
Side support B MY-S□B


Model	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S16A	MY1C16	61	71.6	15	26	4.9	3	6.5	3.4	M4
MY-S20A	MY1C20	67	79.6	25	38	6.4	4	8	4.5	M5
MY-S25A	MY1C25	81	95	35	50	8	5	9.5	5.5	M6
MY-S32A	MY1C32	100	118	45	64	11.7	6	11	6.6	M8
MY-S40A	MY1C40	120	142	EE	90	14.8	0.5	1.1	9	M10
IVI T-540B	MY1C50	142	164	55	5 80	14.8	8.5	14	9	M10
MY-S63A	MY1C63	172	202	70	100	18.3	10.5	17.5	11.5	M12


Guide for Using Side Supports

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.

⚠ Caution


- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.

Construction

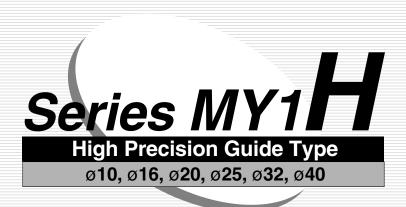
Parts list

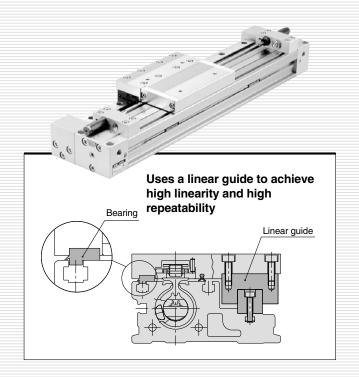
No.	Description	Material	Note
	Description		
	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover R	Aluminum alloy	Hard anodized
_2A	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover L	Aluminum alloy	Hard anodized
ЗА	Head cover WL	Aluminum alloy	Hard anodized
4	Slide table	Aluminum alloy	Electroless nickel plated Hard anodized (ø50, ø63)
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Brass	
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	
17	Rail	Hard steel wire material	
18	End spacer	Special resin	
19	End clamp	Stainless steel	Rubber lining (ø25 to ø40)
20	Cam follower cap	Special resin	
21	Cam follower		
22	Eccentric gear	Stainless steel	
23	Gear bracket	Carbon steel	Black zinc chromated

Parts list

Parts	IIST		
No.	Description	Material	Note
24	Adjustment gear	Stainless steel	
25	Retaining ring	Stainless steel	
26	End cover	Special resin	
28	Backup plate	Special resin	(ø25 to ø40)
29	Stopper	Carbon steel	Nickel plated
30	Spacer	Stainless steel	
35	Spring pin	Carbon tool steel	Black zinc chromated
36	Parallel pin	Stainless steel	(Except ø16, ø20)
38	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated
39	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
40	Hexagon socket head button bolt	Chrome molybdenum steel	Nickel plated
41	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated/Nickel plated
42	Round head Phillips screw	Chrome molybdenum steel	Nickel plated
43	Hexagon socket head taper plug	Carbon steel	Nickel plated
44	Magnet	Rare earth magnet	
45	Magnet holder	Special resin	(Except ø50, ø63)
46	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated (except ø50, ø63)
47	Hexagon socket head taper plug	Carbon steel	Nickel plated
49	Type CR retaining ring	Spring steel	(Except Ø25 to Ø40)
50	Head plate	Aluminum alloy	Hard anodized
51	Side cover	Aluminum alloy	Hard anodized
52	Side scraper	Special resin	(ø50, ø63)
53	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated (ø50, ø63)
54	Bushing	Aluminum alloy	Hard anodized (ø16, ø20)

Seal list


Seai	IISL									
No.	Description	Material	Qty.	MY1C16	MY1C20	MY1C25	MY1C32	MY1C40	MY1C50	MY1C63
15	Seal belt	Special resin	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke	MY50-16A-Stroke	MY63-16A-Stroke
Note) 16	Dust seal band	Stainless steel	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke	MY50-16B-Stroke	MY63-16B-Stroke
27	Scraper	NBR	2	MYM16-15AK0500	MYM20-15AK0501	MYM25-15AA5903	MYM32-15AA5904	MYM40-15AA5905	MYM50-15AK0502	MYM63-15AK0503
31	Piston seal	NBR	2							
32	Cushion seal	NBR	2							
33	Tube gasket	NBR	2							
34	O-ring	NBR	2							
48	O-ring	NBR	4							


Note) Two types of dust seal band are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ④. (A) Black zinc chromated —>MY□□-16B-Stroke (B) Nickel plated —>MY□□-16BW-Stroke

ALMOTION

End lock type capable of holding a position at the stroke end (except bore size Ø10)

Before Operating Series MY1H

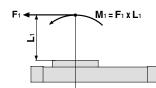
Maximum Allowable Moment/Maximum Allowable Load

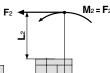
Model	Bore size	Max. allo	wable mom	ent (N·m)	Max. allowable load (kg)			
Wodel	(mm)	M 1	M ₂	Мз	m ₁	m 2	m 3	
	10	0.8	1.1	0.8	6.1	6.1	6.1	
	16	3.7	4.9	3.7	10.8	10.8	10.8	
	20	11	16	11	17.6	17.6	17.6	
MY1H	25	23	26	23	27.5	27.5	27.5	
	32	39	50	39	39.2	39.2	39.2	
	40	50	50	39	50	50	50	

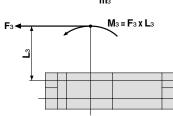
The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum allowable moment

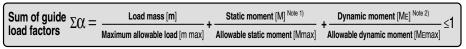
Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load (kg)





Moment (N·m)



<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of impact with stopper) (3) must be examined for the selection calculations.
- * To evaluate, use Va (average speed) for (1) and (2), and V (impact speed V = 1.4Va) for (3). Calculate m max for (1) from the maximum allowable load graph $(m_1,\ m_2,\ m_3)$ and Mmax for (2) and (3) from the maximum allowable moment graph (M₁, M₂, M₃).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors ($\Sigma \alpha$) is the total of all such moments.

2. Reference formulae [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

\(\text{\text{\$\gamma}} \) : Impact speed (mm/s)

: Load (N)

L₁: Distance to the load's center of gravity (m)

ME

0

FE: Load equivalent to impact (at impact with stopper) (N) ME: Dynamic moment (N·m)

g : Gravitational acceleration (9.8m/s²)

Va: Average speed (mm/s) M : Static moment (N·m)

1.4 Va.g.m FE = 100 $\upsilon = 1.4\upsilon a \text{ (mm/s)}$

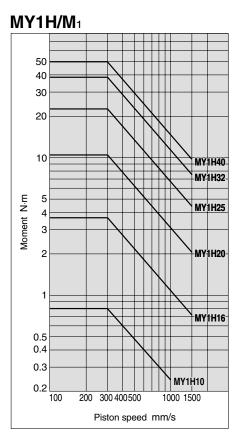
 $\therefore ME = \frac{1}{3} \cdot FE \cdot L_1 = 0.05 \text{ Va m } L_1 \text{ (N·m)}$

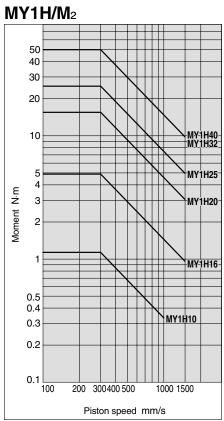
Note 4) $\frac{1.4}{100}$ Ω a is a dimensionless coefficient for calculating impact force.

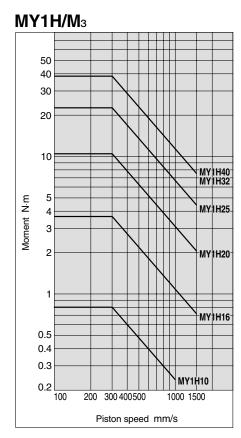
Note 5) Average load coefficient (= $\frac{1}{3}$):

This coefficient is for averaging the maximum load moment at

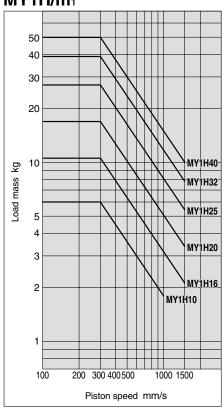
the time of stopper impact according to service life calculations

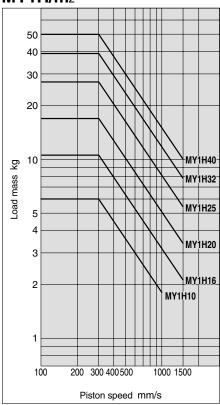

3. Refer to pages 2-598 and 2-599 for detailed selection procedures.

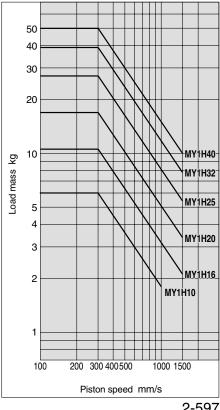

Maximum allowable load


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

Mechanically Jointed Rodless Cylinder High Precision Guide Type

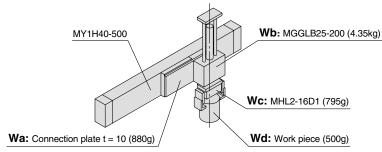


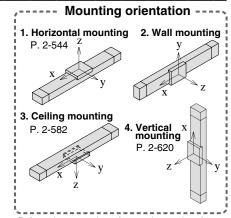



MY1H/m₁

MY1H/m₂

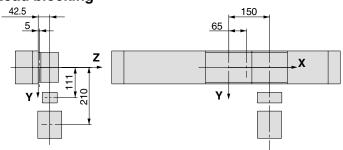
MY1H/m₃


Series MY1H Model Selection


The following are steps for selection of the series MY1H best suited to your application.

Calculation of Guide Load Factor

1 Operating conditions


Mounting orientation Wall mounting

Refer to the pages above for actual examples of calculation for each orientation.

2 Load blocking

Mass and centre of gravity for each work piece

		-		•
Work	Mass	С	enter of gravi	ty
piece no. Wn	m _n	X-axis Xn	Y-axis Yn	Z-axis Zn
Wa	0.88kg	65mm	0mm	5mm
Wb	4.35kg	150mm	0mm	42.5mm
Wc	0.795kg	150mm	111mm	42.5mm
Wd	0.5kg	150mm	210mm	42.5mm

n = a, b, c, d

3 Composite centre of gravity calculation

$$\mathbf{m}_3 = \Sigma \mathbf{m}_n$$

= 0.88 + 4.35 + 0.795 + 0.5 = **6.525kg**

$$X = \frac{1}{m_3} \times \Sigma (m_1 \times x_1)$$

$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = 138.5mm$$

$$Y = \frac{1}{m_3} x \Sigma (mn x yn)$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = 29.6 mm$$

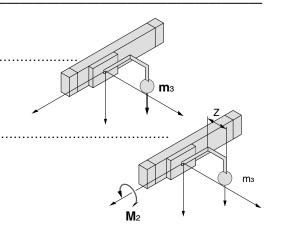
$$Z = \frac{1}{m_3} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = 37.4 \text{mm}$$

4 Calculation of load factor for static load

m₃: Mass

 m_3 max (from 1 of graph MY1H/ m_3) = 50 (kg)

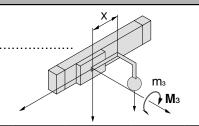

Load factor $\alpha_1 = m_3 / m_3 \text{ max} = 6.525/30 = 0.13$

M₂: Moment

 M_2 max (from 2 of graph MY1H/ M_2) = 50 (N·m)

 $M_2 = m_3 \times g \times Z = 6.525 \times 9.8 \times 37.4 \times 10^{-3} = 2.39 \text{ (N·m)}$

Load factor $\alpha_2 = M_2/M_2 \text{ max} = 2.39/50 = 0.05$



M₃: Moment

 M_3 max (from 3 of graph MY1H/M3) = 38.7 (N·m)

 $M_3 = m_3 \times g \times X = 6.525 \times 9.8 \times 138.5 \times 10^{-3} = 8.86 \text{ (N·m)}$

Load factor $OC_3 = M_3/M_3 \text{ max} = 8.86/38.7 = 0.23$

5 Calculation of load factor for dynamic moment -

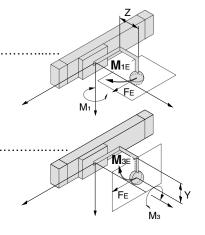
Equivalent load FE at impact

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 300 x 9.8 x 6.525 = 268.6 (N)

M₁E: Moment

 M_1E max (from 4 of graph MY1H/ M_1 where $1.4 \upsilon a = 420$ mm/s) = 35.9 (N·m)

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 268.6 \times 37.4 \times 10^{-3} = 3.35 \text{ (N·m)}$$


Load factor $\alpha_4 = M_1E/M_1E \text{ max} = 3.35/35.9 = 0.09$

M₃E: Moment

M₃E max (from 5 of graph MY1H/M3 where $1.4\nu a = 420$ mm/s) = 27.6 (N·m)

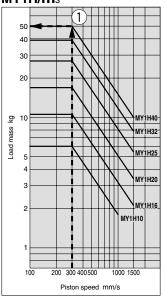
$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 268.6 \times 29.6 \times 10^{-3} = 2.65 \text{ (N·m)}$$

Load factor $\alpha_5 = M_3 E/M_3 E$ max = 2.65/27.6 = **0.10**

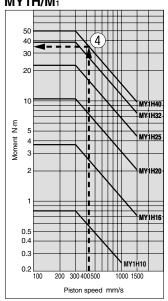
6 Sum and examination of guide load factors -

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 = 0.60 \le 1$

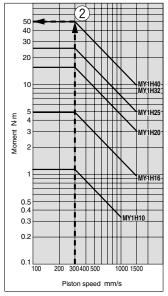
The above calculation is within the allowable value and the selected model can be used.

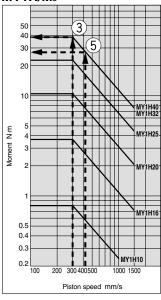

Select a separate shock absorber.

In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".


Load mass

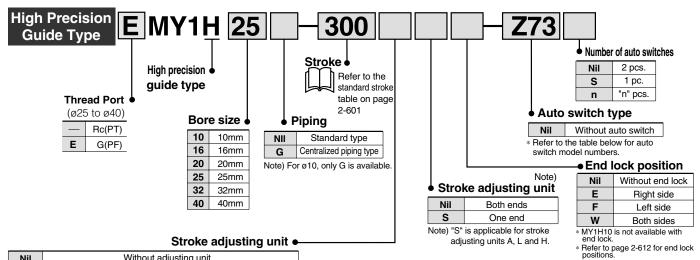
Allowable moment


MY1H/m₃


MY1H/M₁

MY1H/M₂

MY1H/M₃



Mechanically Jointed Rodless Cylinder

Series MY1H

High Precision Guide Type/ø10, ø16, ø20, ø25, ø32, ø40

How to Order

Nil	Without adjusting unit
Α	With adjusting bolt
L	With low load shock absorber + adjusting bolt
Н	With high load shock absorber + adjusting bolt
AL	With one A unit and one L unit each
AH	With one A unit and one H unit each
LH	With one L unit and one H unit each

Shock absorbers for L and H units

Bore size (mm)	10	16	20	25	32	40
L unit	_	RBC	0806	RB1007	RB1	412
H unit	RB0805	_	RB1007	RB1412	RB2	2015

Note) MY1H16 is not available with H unit. MY1H10 is not available with A and L units.

Options

Stroke adjusting unit numbers

Bore size (mm) Unit type	10	16	20
A unit		MYH-A16A	MYH-A20A
L unit	ı	MYH-A16L	MYH-A20L
H unit	MYH-A10H	_	MYH-A20H
Bore size (mm)	25	32	40
(mm)	25 MYH-A25A	32 MYH-A32A	40 MYH-A40A
Unit type (mm)			

Side support numbers

Type Bore size (mm)	10	16	20
Side support A	MY-S10A	MY-S16A	MY-S20A
Side support B	MY-S10B	MY-S16B	MY-S20B
Bore size (mm)	25	32	40
Side support A	MY-S25A	MY-S32A	MY-S40A
Side support B	MY-S25B	MY-S32B	MY-S40B

Applicable auto switches/

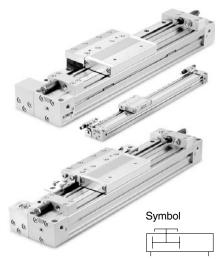
For ø10, ø16, ø20

_	<u> </u>	-,		,															
_		-	Indicator light		Loa	d vo	ltage	Auto switch	n models	Lead wire	e lengt	$h (m)^*$							
Type	function	Electrical entry	ator	Wiring (output)			9-	Electrical ent	ry direction	0.5	3	5	Appli loa						
-	TUTICUOTI	Cituy	Indic	(output)	DC A		AC	Perpendicular	Perpendicular In-line		(L)	(Z)	100	au					
switch			No	2 wire	24V	5V 12V	100V or less	A90V	A90	•	•	_	IC circuit	Relay,					
d sw	_	Grommet	Yes		240	12V	100V	A93V	A93	•	•	_	_	PLĆ					
Reed				3 wire (NPN equiv.)	_	5V	_	A96V	A96	•	•	_	IC circuit	_					
				3 wire (NPN)				M9NV	M9N	•	•	_							
switch	_			3 wire (PNP)				M9PV	М9Р	•	•	_							
		Grommot	Voc	2 wire	241/	12V	_		мэвч	М9В	•	•	_		Relay,				
d state	Diagnostic		Yes	3 wire (NPN)	241	120		M9NWV	M9NW	•	•	0		PLC					
Solid	indication (2 colour	1		3 wire (PNP)				M9PWV	M9PW	•	•	0							
	indicator)	n r							2 wire				M9BWV	M9BW	•	•	0		

For ø25, ø32, ø40,

Φ	Cassial	Floatrical	Indicator light	Minima.	Lo	ad vo	Itage	Auto switc	Auto switch models Lead wire length (m)*					
Type	Special function		ator	Wiring (output)				Electrical ent	ctrical entry direction		3	5		cable
	lunction	Citaly	Indic	(Output)	DC		AC	Perpendicular	Perpendicular In-line		(L)	(Z)	lo	ad
itch			Yes	3 wire (NPN equiv.)	_	5V	_	_	Z 76	•	•	_	IC circuit	_
Reed switch	_	Grommet	res		24V	12V	100V	_	Z73	•	•	•	_	Relay,
Bee			No	2 wire	24V	5V 12V	100V or less		Z80	•	•	_	IC circuit	PLC
				3 wire (NPN)	12V 12V	5V		Y69A	Y59A	•	•	0	IC	
switch	_			3 wire (PNP)		12V		Y7PV	Y7P	•	•	0	circuit	
state sv		Grommet	Vaa	2 wire		12V	┪ ー	Y69B	Y59B	•	•	0	_	Relay,
id sta	Diagnostic		res	3 wire (NPN)	24V	5V		Y7NWV	Y7NW	•	•	0	IC	PLC
Solid	(2 colour			3 wire (PNP)		12V		Y7PWV	Y7PW	•	•	0	circuit	
	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_	

^{**} Solid state switches marked with a "O" symbol are produced upon receipt of order.



^{**} Solid state switches marked with a "O" symbol are produced upon receipt of order.

Mechanically Jointed Rodless Cylinder High Precision Guide Type

Series MY1H

Specifications

<u> </u>											
	Bore size (mm)	10	16	20	25	32	40				
Flui	d	Air									
Acti	ion	Double acting									
Ope	rating pressure range	0.2 to 0.8MPa		0.1 to	0.8MPa						
Pro	of pressure			1.2	MPa						
Ambi	ent and fluid temperature	5 to 60°C									
Cus	hion	Rubber bumper Air cushion									
Lub	rication	Non-lube									
Stro	ke length tolerance	+1.8 0									
size	Front/Side ports	M5 x 0.8 1/8 1.									
Port s	Bottom ports (centralized piping type only)		ø	4	ø5	ø6	ø8				

Stroke adjusting unit specifications

		•													
Bore size (mm)	10	1	6		20			25			32			40	
Unit symbol	Н	Α	L	Α	L	Н	Α	L	Н	Α	L	Н	Α	L	Н
Configuration and shock absorber	With RB 0805 + adjusting bolt	With adjusting bolt	With RB 0806 + adjusting bolt	With adjusting bolt	1 ' .	With RB 1007 + adjusting bolt	With adjusting bolt	T	With RB 1412 + adjusting bolt	With adjusting bolt	1	With RB 2015 + adjusting bolt	With adjusting bolt	'l ' .	With RB 2015 + adjusting bolt
Stroke fine adjusting range (mm)	0 to -10	0 to	-5.6		0 to -6			0 to -11	.5		0 to -12	2		0 to -16	3
a															

Stroke adjusting range When exceeding the stroke fine adjusting range: Use order made specifications "-X416" and "-X417". (Refer to page 2-645 for details.)

Shock absorber specifications

М	odel	RB 0805	RB 0806	RB 1007	RB 1412	RB 2015
Max. energy	absorption (J)	1.0	2.9	5.9	19.6	58.8
Stroke abso	orption (mm)	5	6	7	12	15
Max. impact	speed (mm/s)	1000	1500	1500	1500	1500
Max. operating fi	requency (cycle/min)	80	80	70	45	25
Spring	Extended	1.96	1.96	4.22	6.86	8.34
force (N)	Compressed	3.83	4.22	6.86	15.98	20.50
Operating temp	erature range (°C)			5 to 60		

Linit: N

Piston speed

ſ	Bore size (mn	1)	10	16 to 40
	Without stroke adjusting unit		100 to 500mm/s	100 to 1000mm/s
	Stroke	A unit	100 to 200mm/s	100 to 1000mm/s Note 1)
	adjusting unit	L unit and H unit	100 to 1000mm/s	100 to 1500mm/s Note 2)

Note 1) Be aware that when the stroke adjusting range is increased by manipulating the adjusting bolt, the air cushion capacity decreases. Also, when exceeding the air cushion stroke ranges on page 2-602, the **piston speed** should be **100 to** 200mm per second.

Note 2) For centralized piping, the piston speed is 100 to 1000mm per second.

Note 3) Use at a speed within the absorption capacity range. Refer to page 2-602

Standard strokes

Bore size (mm)	Standard stroke (mm)*	Maximum manufacturable stroke (mm)	
10, 16, 20	50, 100, 150, 200 250, 300, 350, 400	1000	
25, 32, 40	450, 500, 550, 600	1500	

Strokes are manufacturable in 1mm increments, up to the maximum stroke. However, add "-XB10" to the end of the part number for non-standard strokes from 51 to 599. Also when exceeding a 600mm stroke, specify "-XB11" at the end of the model number. (except ø10) Refer to the order made specifications on page 2-644

Theoretical output

1116	i neoreticai output oiii. N							
	Piston	C	Opera	ting p	ressu	ıre (N	ИРа)	
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	0.8
10	78	15	23	31	39	46	54	62
16	200	40	60	80	100	120	140	160
20	314	62	94	125	157	188	219	251
25	490	98	147	196	245	294	343	392
32	804	161	241	322	402	483	563	643
40	1256	251	377	502	628	754	879	1005

1N = Approx. 0.102kgf, 1MPa = Approx.10.2kgf/cm² Theoretical output (N) = Pressure (MPa) x Piston area (mm²)

Refer to page 2-645 regarding order made specifications for series MY1H.

Lock specifications

Bore size (mm)	16	20	25	32	40	
Lock position	One side (selectable), Both sides					
Holding force (max.) N	110	170	270	450	700	
Fine stroke adjustment range (mm)	0 to -5.6	0 to -6	0 to -11.5	0 to -12	0 to -16	
Backlash	1mm or less					
Manual release		Possik	ole (non-locking	type)		

Weights Unit: kg

Bore size	Basic		Side support weight (per set)	Stroke adjusting unit weight (per unit)		
(mm)	weight		Type A and B	A unit	L unit	H unit
10	0.26	0.08	0.003	_	-	0.02
16 0.74	0.74	0.14	0.01	0.02	0.04	_
20	1.35	0.25	0.02	0.03	0.05	0.07
25	2.31	0.30	0.02	0.04	0.07	0.11
32	4.65	0.46	0.04	0.08	0.14	0.23
40	6.37	0.55	0.08	0.12	0.19	0.28

Calculation method Example: MY1H25-300A

Basic weight 2.31kg Additional weight 0.30/50mm stroke

Weight of A unit...... 0.06kg

Cy	/linder stroke	300mm
2.3	31 + 0.30 x 300 ÷ 50 + 0.04 x	2 = Approx. 4.19kg

Cushion Capacity

Cushion selection

<Rubber bumper>

Rubber bumpers are a standard feature on MY1B10.

Since the stroke absorption of rubber bumpers is short, when adjusting the stroke with an A unit, install an external shock absorber.

The load and speed range which can be absorbed by a rubber bumper is inside the rubber bumper limit line of the graph.

<Air cushion>

Air cushions are a standard feature on mechanically jointed rodless cylinders.

The air cushion mechanism is installed to avoid excessive impact of the piston at the stroke end during high speed operation. The air cushion does not act to decelerate the piston near the stroke end.

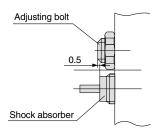
The ranges of load and speed that air cushions can absorb are within the air cushion limit lines shown in the graphs.

<Stroke adjusting unit with shock absorber>

Use this unit when operating with a load or speed exceeding the air cushion limit line, or when cushioning is necessary because the cylinder stroke is outside of the effective air cushion stroke range due to stroke adjustment.

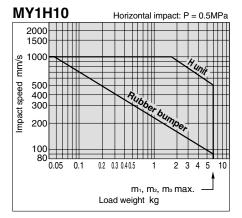
Lunit

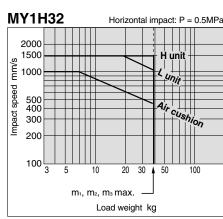
Use this unit when cushioning is necessary outside of the effective air cushion range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

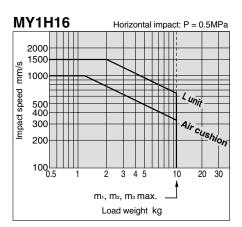

H unit

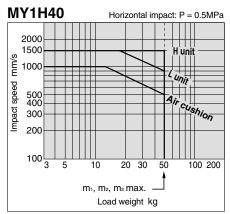
Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

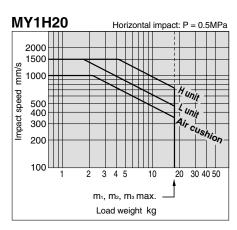
 Refer to the diagram below when using the adjusting bolt to perform stroke adjustment.


When the effective stroke of the shock absorber decreases as a result of stroke adjustment, the absorption capacity decreases dramatically. Secure the adjusting bolt at the position where it protrudes approximately 0.5mm from the shock absorber.




Do not use a shock absorber and air cushion together.


Air cushion st	troke Unit: mm
Bore size (mm)	Cushion stroke
16	12
20	15
25	15
32	19
40	24

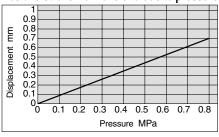

Absorption capacity of rubber bumper, air cushion and stroke adjusting units

Stroke adjusting unit holding bolt tightening torque

Bore size	(mm)	Tightening torque
10 16 20		Refer to page 64 for unit adjusting procedure.
		0.6
		1.5
25		1.5
32		3.0

Calculation of absorbed energy for stroke adjusting unit with shock absorber Unit: N·m

	Horizontal	Vertical (downward)	Vertical (upward)	
Type of impact	<u>m</u> <u>s</u>	V m	3	
Kinetic energy E ₁		$\frac{1}{2}$ m· \mathcal{V}^2		
Thrust energy E ₂	F⋅s	F⋅s + m⋅g⋅s	F·s – m·g·s	
Absorbed energy E		E1 + E2		

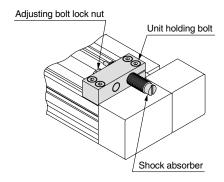

Symbols

- υ: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8m/s²)
- S: Shock absorber stroke (m)

 Note) The speed of the impacting object is measured at the time of impact with the shock absorber.

Rubber bumper (Ø10 only)

Positive stroke from one end due to pressure



▲ Specific Product Precautions

⚠ Caution

Be careful not to get hands caught in the unit.

 When using a product with stroke adjusting unit, the space between the slide table (slider) and the stroke adjusting unit becomes narrow at the stroke end, causing a danger of hands getting caught. Install a protective cover to prevent direct contact with the human body.

<Fastening of unit>

The unit can be fastened by uniformly tightening the four unit holding bolts.

△Caution

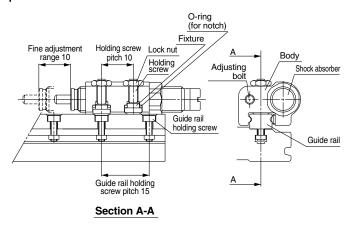
Do not operate with the stroke adjusting unit fixed in an intermediate position.

When the stroke adjusting unit is fixed in an intermediate position, slippage can occur depending on the amount of energy released at the time of an impact. In this case, we recommend using the adjusting holder mounting brackets available with order made specifications - X 416 and - X 417. (Except \emptyset 10.)

For other lengths, consult SMC. (Refer to "Stroke adjusting unit holding bolt tightening torque".)

<Stroke adjustment with adjusting bolt>

Loosen the adjusting bolt lock nut, and adjust the stroke from the head cover side using a hexagon wrench. Re-tighten the lock nut.


<Stroke adjustment with shock absorber>

Loosen the two unit holding bolts on the shock absorber side, turn the shock absorber and adjust the stroke. Then, uniformly tighten the unit holding bolts to secure the shock absorber.

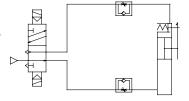
Take care not to over-tighten the holding bolts. (Except ø16 and ø20) (Refer to "Stroke adjusting unit holding bolt tightening torque".)

⚠ Caution

To adjust the stroke adjusting unit of the MY1H10, follow the procedure shown below.

Adjusting Procedure

- Loosen the two lock nuts, and then loosen the holding screws by turning them approximately two turns.
- Move the body to the notch just before the desired stroke. (The notches are found in alternating increments of 5mm and 10mm.)
- 3. Tighten the holding screw to 0.3N·m. Make sure that the tightening does not cause excessive torque.
 - The fixture fits into the fastening hole in the guide rail to prevent slippage, which enables fastening with low torque.
- 4. Tighten the lock nut to 0.6N·m.
- 5. Make fine adjustments with the adjusting bolt and shock absorber.


▲ Specific Product Precautions

With End Locks

Recommended Pneumatic Circuits

⚠ Caution

This is necessary for the correct locking and unlocking actions.

Operating Precautions

⚠ Caution

1. Do not use 3 position solenoid valves.

Avoid use in combination with 3 position solenoid valves (especially closed centre metal seal types). If pressure is trapped in the port on the lock mechanism side, the cylinder cannot be locked.

Furthermore, even after being locked, the lock may be released after some time due to air leaking from the solenoid valve and entering the cylinder.

2. Back pressure is required when releasing the lock.

Before starting operation, be sure to control the system so that air is supplied to the side without the lock mechanism (in case of locks on both ends, the side where the slide table is not locked) as shown in the figure above. There is a possibility that the lock may not be released. (Refer to the section on releasing the lock.)

Release the lock when mounting or adjusting the cylinder

If mounting or other work is performed when the cylinder is locked, the lock unit may be damaged.

4. Operate at 50% or less of the theoretical output.

If the load exceeds 50% of the theoretical output, this may cause problems such as failure of the lock to release, or damage to the lock unit.

5. Do not operate multiple synchronized cylinders.

Avoid applications in which two or more end lock cylinders are synchronized to move one work piece, as one of the cylinder locks may not be able to release when required.

6. Use a speed controller with meter-out control.

It may not be possible to release the lock with meter-in control.

Be sure to operate completely to the cylinder stroke end on the side with the lock.

If the cylinder piston does not reach the end of the stroke, locking and unlocking may not be possible. (Refer to the section on adjusting the end lock mechanism.)

Operating Pressure

⚠ Caution

 Apply pressure of at least 0.15MPa to the port on the lock mechanism side. This is necessary to release the lock.

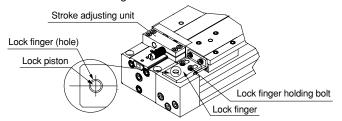
Exhaust Speed

△Caution

1. Locking will occur automatically if the pressure applied to the port on the lock mechanism side falls to 0.05MPa or less. In cases where the piping on the lock mechanism side is long and thin, or the speed controller is separated at some distance from the cylinder port, note that the exhaust speed will be reduced and some time may be required for the lock to engage.

In addition, clogging of a silencer mounted on the solenoid valve exhaust port can produce the same effect.

Relation to Cushion


⚠ Caution

 When the air cushion on the lock mechanism side is in a fully closed or nearly closed state, there is a possibility that the slide table will not reach the stroke end, in which case locking will not occur.

Adjusting the End Lock Mechanism

⚠ Caution

- The end lock mechanism is adjusted at the time of shipping. Therefore, adjustment for operation at the stroke end is unnecessary.
- 2. Adjust the end lock mechanism after the stroke adjusting unit has been adjusted. The adjusting bolt and shock absorber of the stroke adjusting unit must be adjusted and secured first. Locking and unlocking may not occur otherwise.
- 3. Perform fine adjustment of the end lock mechanism as follows. Loosen the lock finger holding bolts, and then adjust by aligning the center of the lock piston with the center of the lock finger hole. Secure the lock finger.

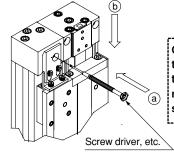
Releasing the Lock

⚠ Warning

1. Before releasing the lock, be sure to supply air to the side without the lock mechanism, so that there is no load applied to the lock mechanism when it is released. (Refer to the recommended pneumatic circuits.) If the lock is released when the port on the side without the lock is in an exhaust state, and with a load applied to the lock unit, the lock unit may be subjected to an excessive force and be damaged.

Furthermore, sudden movement of the slide table is very dangerous

Manual Release

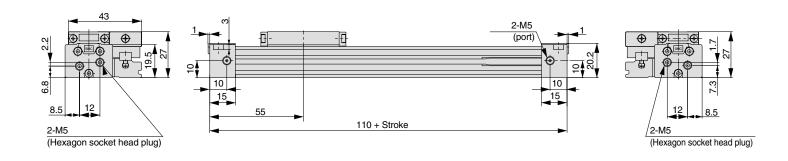

A Caution

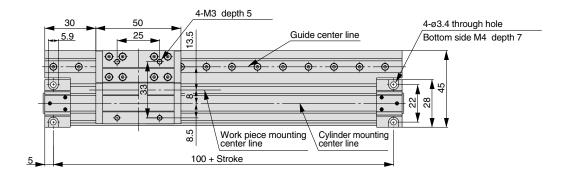
多SMC

1. When manually releasing the end lock, be sure to release the pressure.

If the end lock is released while pressure remains, unexpected lurching may damage work pieces, etc.

Perform manual release of the end lock mechanism as follows. Push the lock piston down with a screw driver, etc., and move the slide table.

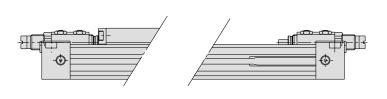

Other handling precautions regarding mounting, piping, and environment are the same as the standard series.

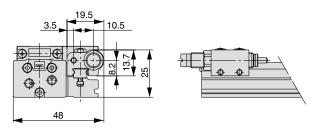

Series MY1H

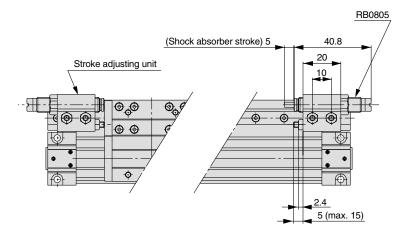
Centralized Piping Type Ø10

[Refer to page 2-648 regarding centralized piping port variations.]

MY1H10G - Stroke

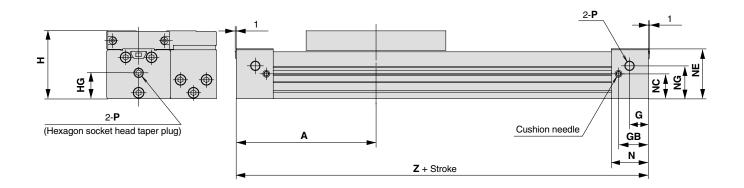


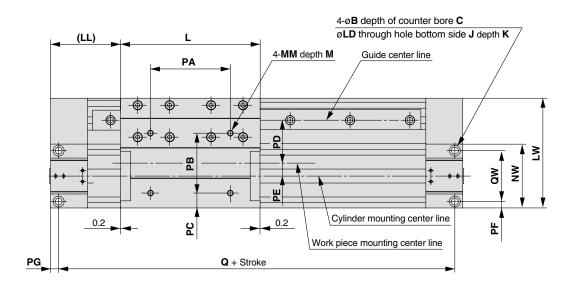




Mechanically Jointed Rodless Cylinder High Precision Guide Type Series MY1H

Stroke adjusting unit
Shock absorber + Adjusting bolt
MY1H10G — Stroke H

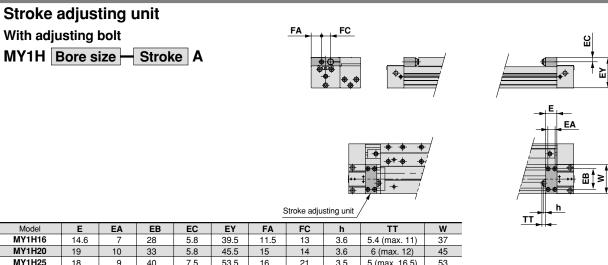


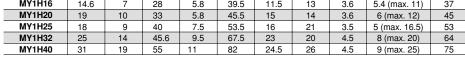


Series MY1H

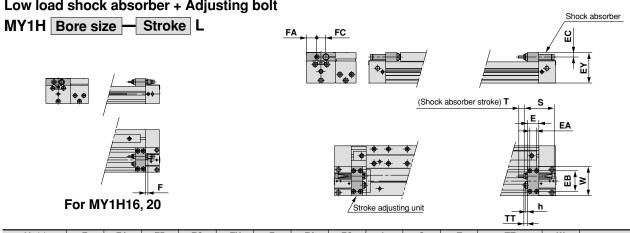
Standard Type Ø16 to Ø40

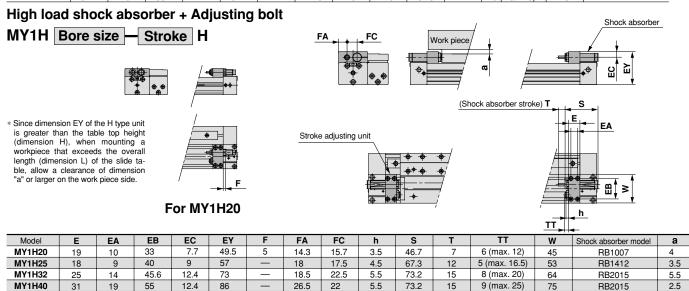
MY1H Bore size — Stroke




Model	Α	В	С	G	GB	Н	HG	J	K	L	LD	(LL)	LW	М	MM	N
MY1H16	80	6	3.5	9	16	40	13.5	M5	10	80	3.5	40	60	7	M4	20
MY1H20	100	7.5	4.5	12.5	20.5	46	17.5	M6	12	100	4.5	50	78	8	M5	25
MY1H25	110	9	5.5	16	24.5	54	21	M6	9.5	114	5.6	53	90	9	M5	30
MY1H32	140	11	6.6	19	30	68	26	M8	16	140	6.8	70	110	13	M6	37
MY1H40	170	14	8.5	23	36.5	84	33.5	M10	15	170	8.6	85	121	13	M6	45

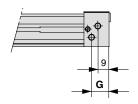
Model	NC	NE	NG	NW	Р	PA	PB	PC	PD	(PE)	PF	PG	Q	QW	Z
MY1H16	13.5	27.8	13.5	37	M5	40	40	7.5	21	9	3.5	3.5	153	30	160
MY1H20	17.5	34	17.5	45	M5	50	40	14.5	27	12	4.5	4.5	191	36	200
MY1H25	20	40.5	28	53	1/8	60	50	14.5	32	13	5.5	7	206	42	220
MY1H32	25	50	33	64	1/8	80	60	15	42	13	6.5	8	264	51	280
MY1H40	30.5	63	42.5	75	1/4	100	80	20.5	37.5	23	8	9	322	59	340


"P" indicates cylinder supply ports. * The plug for MY1H16/20-P is a hexagon socket head plug.

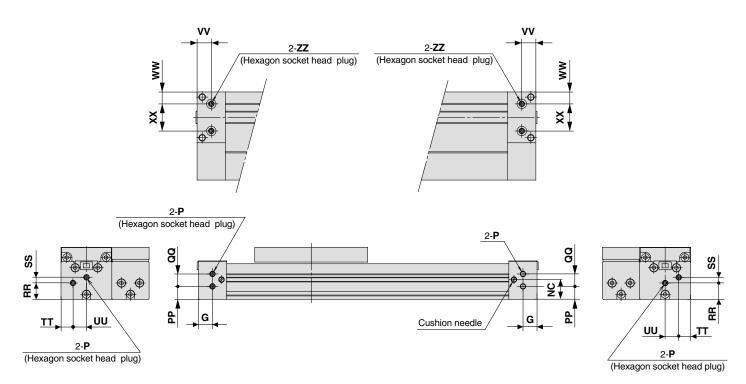


Low load shock absorber + Adjusting bolt

Model	E	EA	EB	EC	EY	F	FA	FC	h	S	Т	TT	W	Shock absorber model
MY1H16	14.6	7	28	5.8	39.5	4	11.5	13	3.6	40.8	6	5.4 (max. 11)	37	RB0806
MY1H20	19	10	33	5.8	45.5	4	15	14	3.6	40.8	6	6 (max. 12)	45	RB0806
MY1H25	18	9	40	7.5	53.5	_	16	21	3.5	46.7	7	5 (max. 16.5)	53	RB1007
MY1H32	25	14	45.6	9.5	67.5	_	23	20	4.5	67.3	12	8 (max. 20)	64	RB1412
MY1H40	31	19	55	11	82	_	24.5	26	4.5	67.3	12	9 (max. 25)	75	RB1412

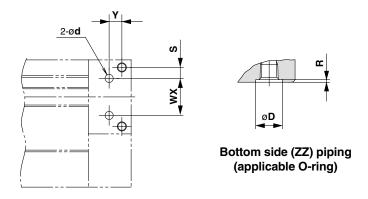


Series MY1H


Centralized Piping Type $\emptyset 16$, $\emptyset 20$

Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions. Refer to pages 2-608 and 2-609 for details regarding dimensions, etc.

MY1H Bore size G — Stroke



For MY1H16

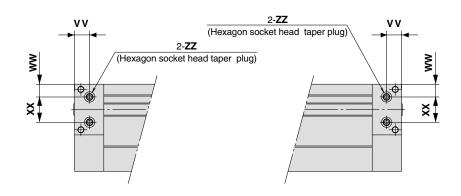
Model	G	NC	P	PP	QQ	RR	SS	TT	UU	٧٧	ww	XX	ZZ
MY1H16G	14	14	M5	7.5	9	11	3	9	10.5	10	7.5	22	M5
MY1H20G	12.5	17.5	M5	11.5	11	14.5	5	10.5	12	12.5	10.5	24	M5

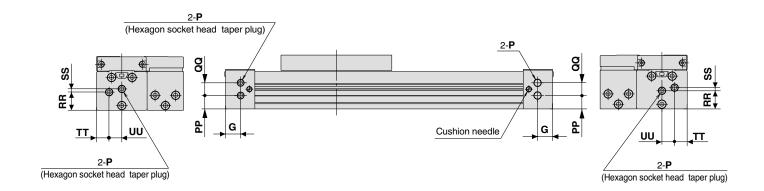
"P" indicates cylinder supply ports.

Hole sizes for centralized piping on the bottom

(Machine the mounting side to the dimensions below.)

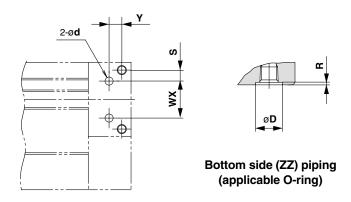
			,				
Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1H16G	22	6.5	4	4	8.4	1.1	Ce
MY1H20G	24	8	6	4	8.4	1.1	C6


Mechanically Jointed Rodless Cylinder High Precision Guide Type


Series MY1H

Centralized Piping Type $\emptyset 25$ to $\emptyset 40$

Refer to page 2-648 regarding centralized piping port variations. Dimensions for types other than centralized piping and for the stroke adjusting unit are identical to the standard type dimensions. Refer to pages 2-608 and 2-609 for details regarding dimensions, etc.


MY1H Bore size G - Stroke

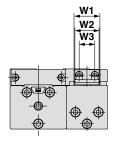
Model	G	P	PP	QQ	RR	SS	TT	UU	VV	WW	XX	ZZ
MY1H25G	16	1/8	12	16	16	6	14.5	15	16	12.5	28	Rc 1/16
MY1H32G	19	1/8	17	16	23	4	16	16	19	16	32	Rc 1/16
MY1H40G	23	1/4	18.5	24	27	10.5	20	22	23	19.5	36	Rc 1/8

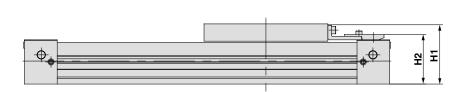
[&]quot;P" indicates cylinder supply ports.

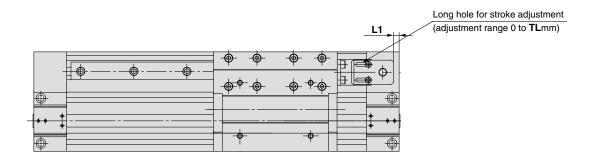
Hole sizes for centralized piping on the bottom

(Machine the mounting side to the dimensions below.)

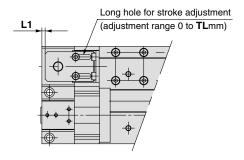
							· · · · · · · · · · · · · · · · · · ·
Model	WX	Υ	S	d	D	R	Applicable O-ring
MY1H25G	28	9	7	6	11.4	1.1	C9
MY1H32G	32	11	9.5	6	11.4	1.1	O 9
MY1H40G	36	14	11.5	8	13.4	1.1	C11.2

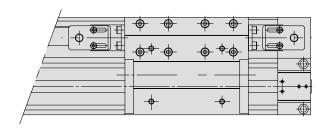

Series MY1H


End Lock Ø16 to Ø40


Dimensions for types other than end lock are identical to the standard type dimensions.

Refer to page 2-609 for details regarding dimensions, etc.


For MY1H□-□E (right side)



For MY1H□-□F (left side)

For MY1H□-□W (both sides)

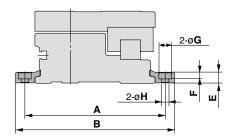
Dimensions H1 H2 L1 TL W1 W2

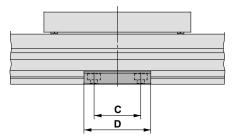
Model	111	112		16	VV 1	VV Z	443
MY1H16	39.2	33	0.5	5.6	18	16	10.4
MY1H20	45.7	39.5	3	6	18	16	10.4
MY1H25	53.5	46	3	11.5	29.3	27.3	17.7
MY1H32	67	56	6.5	12	29.3	27.3	17.7
MY1H40	83	68.5	10.5	16	38	35	24.4

(mm)

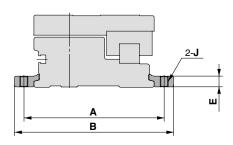
[&]quot;P" indicates cylinder supply ports.

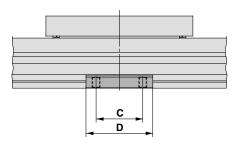
* The plug for MY1H16/20-P is a hexagon socket head plug.




Mechanically Jointed Rodless Cylinder High Precision Guide Type

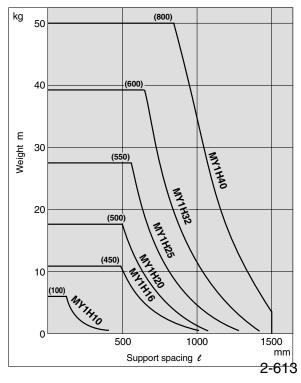
Series MY1H


Side Support


Side support A MY-S□A

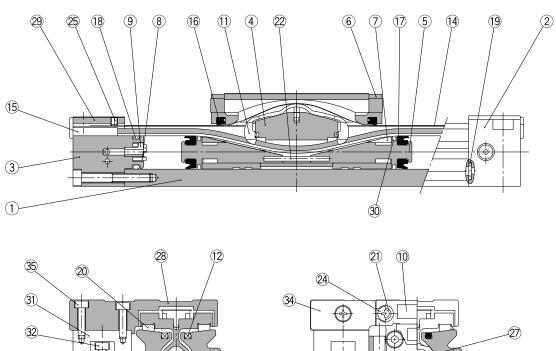
Side support B MY-S□B

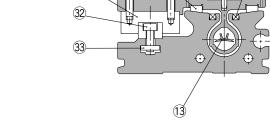
Model	Applicable cylinder	Α	В	С	D	Е	F	G	Н	J
MY-S10A	MY1H10	53	61.6	12	21	3.6	1.8	6.5	3.4	M4
MY-S16A	MY1H16	71	81.6	15	26	4.9	3	6.5	3.4	M4
MY-S20A	MY1H20	91	103.6	25	38	6.4	4	8	4.5	M5
MY-S25A	MY1H25	105	119	35	50	8	5	9.5	5.5	M6
MY-S32A	MY1H32	130	148	45	64	11.7	6	11	6.6	M8
MY-S40 ^A _B	MY1H40	145	167	55	80	14.8	8.5	14	9	M10

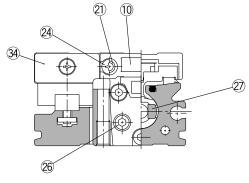

Guide for Using Side Supports

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.

- If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.






Series MY1H

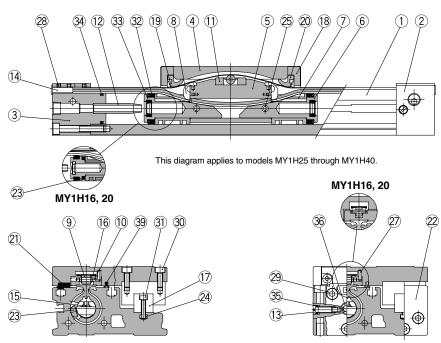
Construction

Centralized piping type/MY1H10G

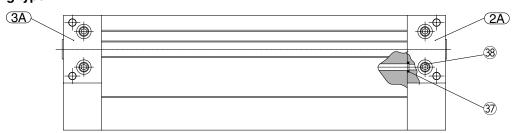
Parts list

i aits	list		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover WL	Aluminum alloy	Hard anodized
4	Piston yoke	Aluminum alloy	Hard anodized
5	Piston	Aluminum alloy	Chromated
6	End cover	Special resin	
7	Wear ring	Special resin	
8	Bumper	Polyurethane rubber	
9	Holder	Stainless steel	
10	Stopper	Carbon steel	Nickel plated
11	Belt separator	Special resin	
12	Seal magnet	Rubber magnet	
15	Belt clamp	Special resin	
20	Bearing	Special resin	
21	Spacer	Chrome molybdenum steel	Nickel plated

Parts list


No.	Description	Material	Note
22	Spring pin	Stainless steel	
23	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
24	Round head Phillips screw	Carbon steel	Nickel plated
25	Hexagon socket head set screw	Carbon steel	Black zinc chromated
26	Hexagon socket head plug	Carbon steel	Nickel plated
27	Magnet	Rare earth magnet	
28	Slide Table	Aluminum alloy	Hard anodized
29	Head plate	Stainless steel	
30	Felt	Felt	
31	Linear guide	_	
32	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
33	Square nut	Carbon steel	Nickel plated
34	Stopper plate	Carbon steel	Nickel plated
35	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated

Seal list


No.	Description	Material	Qty.	MY1B10
13	Seal belt	Special resin	1	MY10-16A-stroke
14	Dust seal band	Stainless steel	1	MY10-16B-stroke
16	Scraper	NBR	2	MYB10-15AR0597
17	Piston seal	NBR	2	
18	Tube gasket	NBR	2	
19	O-ring	NBR	4	

Standard type

Centralized piping type

Parts list

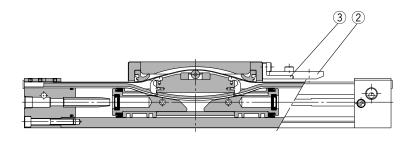
raits	แอเ		
No.	Description	Material	Note
1	Cylinder tube	Aluminum alloy	Hard anodized
2	Head cover R	Aluminum alloy	Hard anodized
2A	Head cover WR	Aluminum alloy	Hard anodized
3	Head cover L	Aluminum alloy	Hard anodized
3A	Head cover WL	Aluminum alloy	Hard anodized
4	Slide table	Aluminum alloy	Hard anodized
5	Piston yoke	Aluminum alloy	Chromated
6	Piston	Aluminum alloy	Chromated
7	Wear ring	Special resin	
8	Belt separator	Special resin	
9	Guide roller	Special resin	
10	Guide roller shaft	Stainless steel	
11	Coupler	Sintered iron material	
12	Cushion ring	Brass	
13	Cushion needle	Rolled steel	Nickel plated
14	Belt clamp	Special resin	

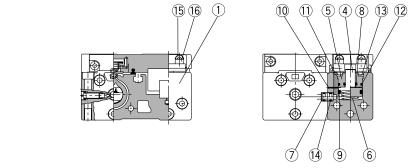
Parts list

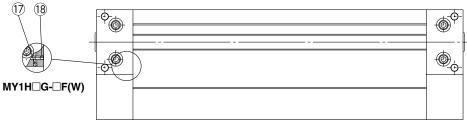
i aits	1131		
No.	Description	Material	Note
17	Guide	_	
18	End cover	Chrome molybdenum steel	Nickel plated
20	Backup plate	Special resin	
21	Bearing	Special resin	
22	Guide cover	Aluminum alloy	Hard anodized
23	Magnet	Rare earth magnet	
24	Square nut	Carbon steel	Nickel plated
25	Spring pin	Carbon tool steel	Black zinc chromated
27	Parallel pin	Stainless steel	(except ø16, ø20)
28	Hexagon socket head set screw	Chrome molybdenum steel	Black zinc chromated/Nickel plated
29	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
30	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
31	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
36	Hexagon socket head taper plug	Carbon steel	Nickel plated
38	Hexagon socket head taper plug	Carbon steel	Nickel plated
39	Side scraper	Special resin	

Seal list

Seai	IISL							
No.	Description	Material	Qty.	MY1H16	MY1H20	MY1H25	MY1H32	MY1H40
15	Seal belt	Special resin	1	MY16-16A-Stroke	MY20-16A-Stroke	MY25-16A-Stroke	MY32-16A-Stroke	MY40-16A-Stroke
Note)	Dust seal band	Stainless steel	1	MY16-16B-Stroke	MY20-16B-Stroke	MY25-16B-Stroke	MY32-16B-Stroke	MY40-16B-Stroke
19	Scraper	NBR	2	MYH16-15AK2900	CYP025-15A29721	CYP032-15A29722	CYP040-15A29723	CYP40-15A29723
32	Piston seal	NBR	2					
33	Cushion seal	NBR	2					
34	Tube gasket	NBR	2					
35	O-ring	NBR	2					
37	O-ring	NBR	4					


Note) Two types of dust seal band are available. Verify the type to use, since the part number varies depending on the treatment of the hexagon socket head set screw ② (A) Black zinc chromated —>MY□□-16B-Stroke (B) Nickel plated —>MY□□-16BW-Stroke




Series MY1H

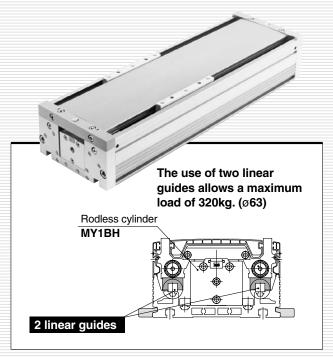
Construction

With end lock

Parts list

No.	Description	Material	Note
1	Lock body	Aluminum alloy	Hard anodized
2	Lock finger	Carbon tool steel	Nickel plated
3	Lock finger bracket	Carbon steel	Nickel plated
4	Lock piston	Carbon tool steel	Electroless nickel plated
5	Rod cover	Aluminum alloy	Hard anodized
6	Return spring	Spring steel	Zinc chromated
7	Bypass pipe	Aluminum alloy	Hard anodized
10	Steel ball	High carbon chrome bearing steel	
11	Steel ball	High carbon chrome bearing steel	
13	Round R type retainer	Carbon tool steel	Nickel plated
15	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
16	Hexagon socket head cap screw	Chrome molybdenum steel	Nickel plated
17	Steel ball	High carbon chrome bearing steel	
18	Steel ball	High carbon chrome bearing steel	

Seal list


No.	Description	Material	Qty.
8	Rod seal	NBR	1
9	Piston seal	NBR	1
12	O-ring	NBR	1
14	O-ring	NBR	2

High Rigidity/ High Precision Guide Type ø50, ø63

Easy maintenance is stressed by a revolutionary construction which allows cylinder replacement without disturbing the guide units or work piece.

Before Operating Series MY1HT

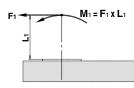
Maximum Allowable Moment/Maximum Allowable Load

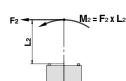
Model	Bore size	Max. allo	wable mom	ent (N·m)	Max. allowable load (kg)		
	(mm)	M ₁	M ₂	Мз	m 1	m 2	m 3
	50	140	180	140	200	140	200
MY1HT	63	240	300	240	320	220	320

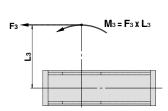
The above values are the maximum allowable values for moment and load. Refer to each graph regarding the maximum allowable moment and maximum allowable load for a particular piston speed.

Maximum allowable moment

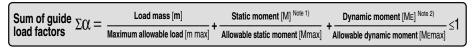
Select the moment from within the range of operating limits shown in the graphs. Note that the maximum allowable load value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable load for the selected conditions.


Load (kg)





Moment (N·m)



<Calculation of guide load factor>

- 1. Maximum allowable load (1), static moment (2), and dynamic moment (at the time of impact with stopper) (3) must be examined for the selection calculations.
- * To evaluate, use \mathcal{V} a (average speed) for (1) and (2), and \mathcal{V} (impact speed \mathcal{V} = 1.4 \mathcal{V} a) for (3). Calculate m max for (1) from the maximum allowable load graph (m1, m2, m3) and Mmax for (2) and (3) from the maximum allowable moment graph (M1, M2, M3).

Note 1) Moment caused by the load, etc., with cylinder in resting condition.

Note 2) Moment caused by the impact load equivalent at the stroke end (at the time of impact with stopper).

Note 3) Depending on the shape of the work piece, multiple moments may occur. When this happens, the sum of the load factors $(\Sigma \alpha)$ is the total of all such moments.

2. Reference formulae [Dynamic moment at impact]

Use the following formulae to calculate dynamic moment when taking stopper impact into consideration.

m: Load mass (kg)

U : Impact speed (mm/s)

F: Load (N)

L1: Distance to the load's center of gravity (m)

FE: Load equivalent to impact (at impact with stopper) (N) ME: Dynamic moment (N·m)

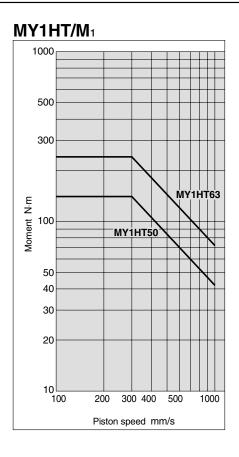
g: Gravitational acceleration (9.8m/s2)

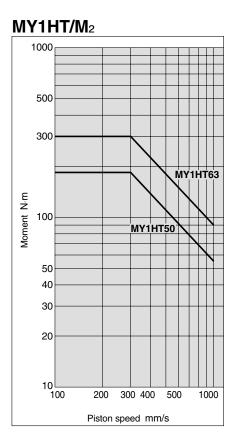
Va: Average speed (mm/s) M: Static moment (N·m)

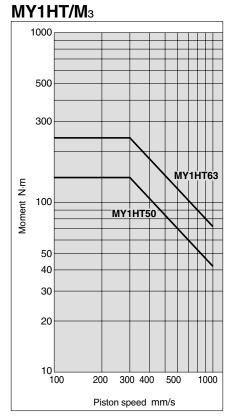
 $FE = \frac{1.4}{100} \text{ Va} \cdot \text{g} \cdot \text{m}$ υ = 1.4 υ a (mm/s)

∴ ME = $\frac{1}{3}$ · FE · L₁ = 0.05 va m L₁ (N·m) Note 4) $\frac{1.4}{100}$ Va is a dimensionless coefficient for calculating impact force.

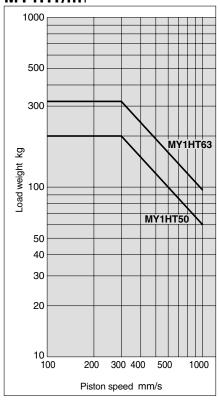
Note 5) Average load coefficient (= $\frac{1}{3}$):

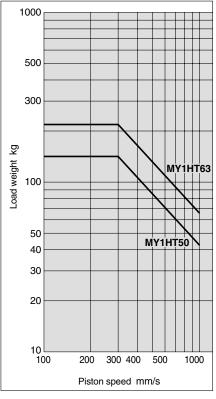

This coefficient is for averaging the maximum load moment at the time of stopper impact according to service life calculations.

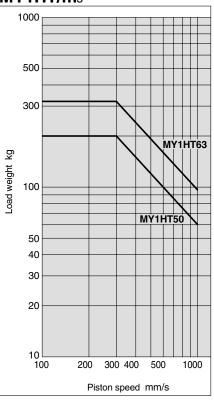

ME


3. Refer to pages 2-620 and 2-621 for detailed selection procedures.

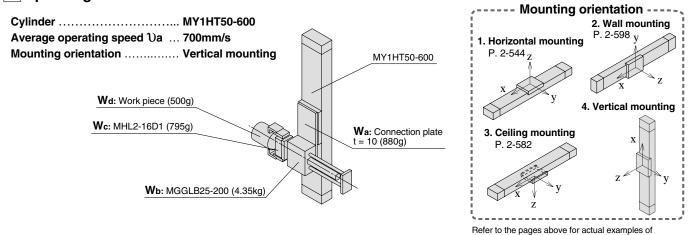
Maximum allowable load


Select the load from within the range of limits shown in the graphs. Note that the maximum allowable moment value may sometimes be exceeded even within the operating limits shown in the graphs. Therefore, also check the allowable moment for the selected conditions.

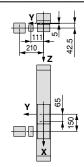



MY1HT/m₁

MY1HT/m₃



Series MY1HT Model Selection


The following are steps for selection of the series MY1 best suited to your application.

Calculation of Guide Load Factor

1 Operating conditions

2 Load blocking

Mass and centre of gravity for each work piece

calculation for each orientation.

	,									
Work piece		С	Center of gravity							
no. Wn	Mass m	X-axis Xn	Y-axis Yn	Z-axis Zn						
Wa	0.88kg	65mm	0mm	5mm						
Wb	4.35kg	150mm	0mm	42.5mm						
Wc	W c 0.795kg		111mm	42.5mm						
Wd	0.5ka	150mm	210mm	42.5mm						

n = a. b. c.

3 Composite centre of gravity calculation -

$$\mathbf{m}_{4} = 2 \text{mn}$$

$$= 0.88 + 4.35 + 0.795 + 0.5 = \mathbf{6.525kg}$$

$$\mathbf{X} = \frac{1}{m_{4}} \times \Sigma \text{ (mn x xn)}$$

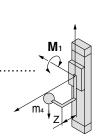
$$= \frac{1}{6.525} (0.88 \times 65 + 4.35 \times 150 + 0.795 \times 150 + 0.5 \times 150) = \mathbf{138.5mm}$$

$$\mathbf{Y} = \frac{1}{m_{4}} \times \Sigma \text{ (mn x yn)}$$

$$= \frac{1}{6.525} (0.88 \times 0 + 4.35 \times 0 + 0.795 \times 111 + 0.5 \times 210) = \mathbf{29.6mm}$$

$$\mathbf{Z} = \frac{1}{m_{4}} \times \Sigma \text{ (mn x zn)}$$

$$= \frac{1}{6.525} (0.88 \times 5 + 4.35 \times 42.5 + 0.795 \times 42.5 + 0.5 \times 42.5) = \mathbf{37.4mm}$$

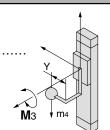

4 Calculation of load factor for static load -

m4: Mass

m₄ is the mass which can be transferred by the thrust, and as a rule, is actually...... about 0.3 to 0.7 of the thrust. (This differs depending on the operating speed.)

Load factor $\alpha_1 = M_2/M_2 \text{ max} = 2.39/60 = 0.04$

 \mathbf{m}_4


Mechanically Jointed Rodless Cylinder High Rigidity/High Precision Guide Type Series MY1HT

M₃: Moment

 M_3 max (from 2 of graph MY1HT/ M_3) = 60 (N·m)

 $M_3 = m_4 \times g \times Y = 6.525 \times 9.8 \times 29.6 \times 10^{-3} = 1.89 (N \cdot m)$

Load factor $\alpha_2 = M_3/M_3 \text{ max} = 1.89/60 = 0.03$

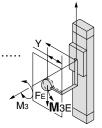
5 Calculation of load factor for dynamic moment –

Equivalent load at impact FE

FE =
$$\frac{1.4}{100}$$
 x va x g x m = $\frac{1.4}{100}$ x 700 x 9.8 x 6.525 = 626.7 (N)

M₁E: Moment

$$M_1E = \frac{1}{3} \times FE \times Z = \frac{1}{3} \times 626.7 \times 37.4 \times 10^{-3} = 7.82 \text{ (N·m)}$$


Load factor $\alpha_3 = M_1 E/M_1 E \text{ max} = 7.82/42.9 = 0.18$

M₃E: Moment

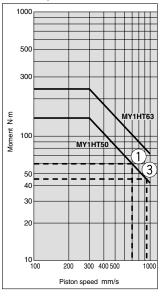
 M_3E max (from 4 of graph MY1HT/ M_3 where 1.4 $\upsilon a = 980$ mm/s) = 42.9 (N·m)

$$M_3E = \frac{1}{3} \times FE \times Y = \frac{1}{3} \times 626.7 \times 29.6 \times 10^{-3} = 6.19 \text{ (N·m)}$$

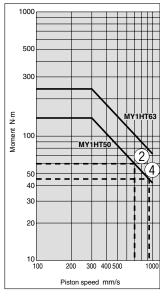
Load factor OL4 = M3E/M3E max = 6.19/42.9 = 0.14

5 Sum and examination of guide load factors -

 $\Sigma \alpha = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0.39 \le 1$


The above calculation is within the allowable value and the selected model can be used.

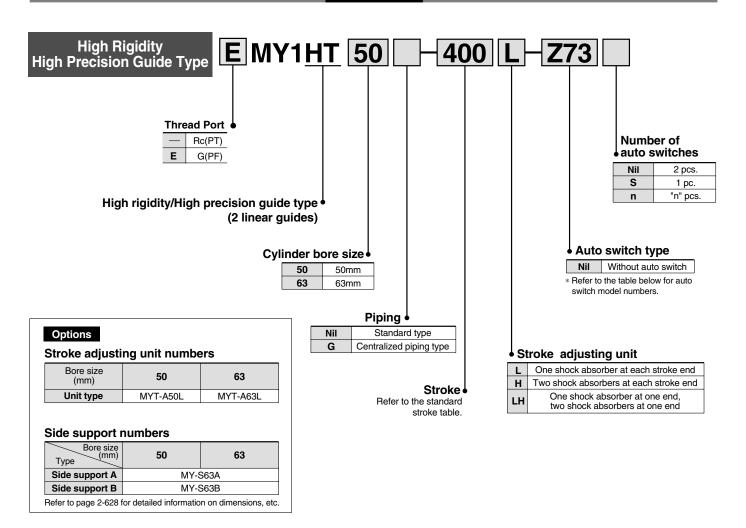
Select a separate shock absorber.


In an actual calculation, when the sum of guide load factors $\Sigma \alpha$ in the formula above is more than 1, consider decreasing the speed, increasing the bore size, or changing the product series. Also, this calculation can be performed easily with the "SMC Pneumatics CAD System".

Allowable moment

MY1HT/m-

MY1HT/M₃



Mechanically Jointed Rodless Cylinder

Series MY1H7

High Rigidity/High Precision Guide Type/ø50, ø63

How to Order

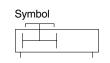
Applicable auto switches

			ō			Load volt	age	Auto switc	h models	Lead wire	lengtl	າ (m)*			
Туре	Special	Electrical	Indicator light	Wiring		DO.	40	Electrical en	try direction	0.5	3	5		cable	
, ,	function	entry	로	(output)		DC	AC	Perpendicular	In-line	(Nil)	(L)	(Z)	loa	ao	
75 E			Yes	3 wire (NPN equiv.)	_	5V	_	_	Z 76	•	•	_	IC circuit	_	
Reed	_	Grommet	165	2 wire	24V	12V	100V	_	Z73	•	•	•	_	Relay,	
S B			No	2 wire 2	24V	5V, 12V	100V or less	_	Z80	•	•	_	IC circuit	PLC	
				3 wire (NPN)		EV 40V		Y69A	Y59A	•	•	0	10 -:		
_ <u>\$</u> _	_			3 wire (PNP)			5V, 12V	50, 120	Y7PV	Y7P	•	•	0	IC circuit	
lid state switch		Grommet	Yes	2 wire	24V	12V	_	Y69B	Y59B	•	•	0	_	Relay,	
Solid	Diagnostic		165	3 wire (NPN)	24V	EV 40V		Y7NWV	Y7NW	•	•	0	10 -:	PLC	
တိ	Indication (2 colour			3 wire (PNP)		5V, 12V		Y7PWV	Y7PW	•	•	0	IC circuit		
	indicator)			2 wire		12V		Y7BWV	Y7BW	•	•	0	_		

³mL Y59AL
5mZ Y59AZ

* Solid state switches marked with a "O" symbol are produced upon receipt of order.

Note) Separate switch spacers (MB-32-36-L8509) are required for retrofitting of auto switches.



Mechanically Jointed Rodless Cylinder High Rigidity/High Precision Guide Type

Series MY1HT

Specifications

Bore size (mm)	50	63				
Fluid		Air				
Action	Do	puble acting				
Operating pressure range	0.1	to 0.8MPa				
Proof pressure		1.2MPa				
Ambient and fluid temperate	re	5 to 60°C				
Piston speed	100	100 to 1000mm/s				
Cushion	Double side she	ock absorber (standard)				
Lubrication		Non-lube				
Stroke length tolerance	2700 or l	2700 or less ^{+1,8} , 2701 to 5000 ^{+2,8}				
Port size Side port		3/8				

Note) Use at a speed within the absorption capacity. Refer to page 2-624

Stroke Adjusting Unit Specifications

Applicable bore size (mm)	5	0	63			
	L	Н	L	Н		
Unit symbol, contents	RB2015 and adjusting bolt: 1 set each			RB2725 and adjusting bolt: 2 sets each		
Stroke fine adjusting range (mm)	0 to	-60	0 to -85			
Stroke adjusting range		Refer to page 2-625 for	for adjustment method.			

Shock absorber model		RB2015 x 1 pc.	RB2015 x 2 pcs.	RB2725 x 1 pc.	RB2725 x 2 pcs.	
Max. energy absorption (J)		58.8	88.2	147	220.5	
Stroke abso	rption (mm)	15	15	25	25	
Max. impact	speed (mm/s)	10	00	1000		
Max. operating f	frequency (cycles/min)	25	25	10	10	
Spring	Extended	8.34	16.68	8.83	17.66	
force (N) Compressed		20.50 41.00 20.01 40.				
Operating temperature range (°C)			5 to	60		

Note) Maximum energy absorption for 2 pcs. is calculated by multiplying the value for 1 pc. by 1.5.

Theoretical Output

							L	Jnit: N
Bore			•	_	pres		•	,
size (mm)	area (mm²)	0.2	0.3	0.4	0.5	0.6	0.7	8.0
50	1962	392	588	784	981	1177	1373	1569
63	3115	623	934	1246	1557	1869	2180	2492

1N = Approx. 0.102kgf, 1MPa = Approx.10.2kgf/cm²
Note) Theoretical output (N) = Pressure (MPa) x Piston

Order made specifications

Refer to page 2-645 regarding order made specifications for series MY1H.

Standard Strokes

Bore size (mm)	Standard stroke (mm)*	Max. manufacturable stroke (mm)
50, 63	200, 400, 600, 800, 1000, 1500, 2000	5000

Weights

Unit: kg Side support Additional Stroke adjusting unit weight weight (per set) Basic Bore size weight (mm) weight per 25mm Type A and B L unit LH unit H unit of stroke 50 30.62 0.87 0.17 0.62 0.93 1.24 41.69 1.13 0.17 1.08 2.16 63 1.62

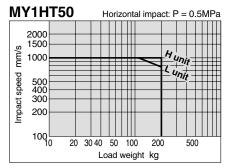
Calculation method	Example: MY1HT50-400L
Basic weight	30.62kg
Additional weight	0.87/25mm stroke
L unit weight	0.62kg

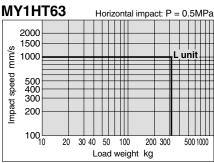
Series MY1HT

Cushion Capacity

Cushion Selection

<Stroke adjusting unit with built-in shock absorber>


L unit

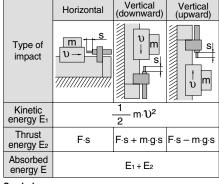

Use this unit when cushioning is necessary outside the air cushion stroke range even if the load and speed are within the air cushion limit line, or when the cylinder is operated in a load and speed range above the air cushion limit line and below the L unit limit line.

H unit

Use this unit when the cylinder is operated in a load and speed range above the L unit limit line and below the H unit limit line.

Stroke Adjusting Unit Absorption Capacity

Stopper Bolt Holding Screw Tightening Torque


Stopper bolt holding screw tightening torque

Unit: N·m

Bore size (mm)	Tightening torque
50	0.6
63	1.5

Calculation of absorbed energy for stroke adjusting unit with built-in shock absorber

Unit: N·m Vertical (downward) (upward)

Symbols

- υ: Speed of impacting object (m/s)
- m: Weight of impacting object (kg)
- F: Cylinder thrust (N)
- g: Gravitational acceleration (9.8m/s²)
- s: Shock absorber stroke (m)

Note) The speed of the impacting object is measured at the time of impact with the shock absorber.

Mounting

⚠ Caution

1. Do not apply strong impact or excessive moment to the slide table (slider).

Since the slide table (slider) is supported by precision bearings, do not subject it to strong impact or excessive moment when mounting work pieces.

2. Perform careful alignment when connecting to a load which has an external guide mechanism.

Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each type of guide, but careful alignment is necessary for connection to a load which has an external guide mechanism. Since fluctuation of the center axis increases as the stroke becomes longer, use a method of connection which can absorb the variations (floating mechanism).

3. Do not put hands or fingers inside when the body is suspended.

Since the body is heavy, use eye bolts when suspending it. (The eye bolts are not included with the body.)

Handling

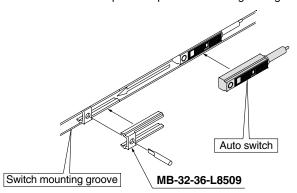
Caution

1. Do not inadvertently move the setting of the guide adjust-

The guide is already adjusted at the factory, and readjustment is not necessary under normal operating conditions. Therefore, do not inadvertently move the setting of the guide adjustment unit.

Handling

∕!\ Caution


2. Air leakage will result from negative pressure.

Under operating conditions which create negative pressure inside the cylinder due to external forces or inertial forces, note that air leakage may occur due to separation of the seal belt.

Auto Switch Mounting

∕!\ Caution

- 1. Insert the auto switch into the cylinder's switch mounting groove, then slide it sideways in the direction shown below and place it inside the switch spacer (with the spacer positioned over it).
- 2. Use a flat head watchmakers screw driver to fasten the switch, tightening with a torque of 0.05 to 0.1N·m. As a rule, it should be turned about 90° past the point at which tightening can be

Stroke Adjustment

⚠ Caution

- As shown in Figure 1, to adjust the stopper bolt within the adjustment range A, insert a hexagon wrench from the top to loosen the hexagon socket head set screw by approximately one turn, and then adjust the stopper bolt with a flat head screw driver.
- 2. When the adjustment described in 1 above is insufficient, the shock absorber can be adjusted. Remove the covers as shown in Figure 2 and make further adjustment by loosening the hexagon nut.
- Various dimensions are indicated in Table 1. Never make an adjustment that exceeds the dimensions in the table, as it may cause an accident and/or damage.

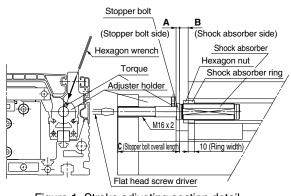
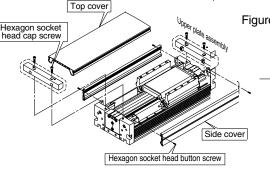



Figure 1. Stroke adjusting section detail

Table 1 (mm) Bore size (mm) 50 63 A to A MAX 6 to 26 6 to 31 B to B MAX 14 to 54 14 to 74 87 102 Max. adjustment range 85 60

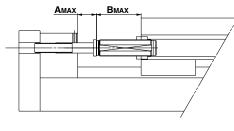


Figure 2. Cover installation and removal

Disassembly and Assembly Procedure

Figure 3. Maximum stroke adjustment detail

--

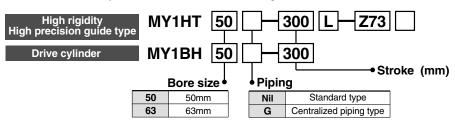
⚠ Caution

Disassembly procedure

- 1. Remove the hexagon socket head cap screws 1, and remove the upper plates.
- 2. Remove the top cover.
- 3. Remove the hexagon socket head cap screws 2, and remove the end covers and couplers.
- 4. Remove the hexagon socket head cap screws 3.
- Remove the hexagon socket head cap screws 4, and remove the end supports.
- 6. Remover the cylinder.

Assembly procedure

- 1. Insert the MY1BH cylinder.
- Temporarily fasten the end supports with the hexagon socket head cap screws 4.
- 3. With two hexagon socket head cap screws 3 on the L or R side, pull the end support and the cylinder.
- 4. Tighten the hexagon socket head cap screws 3 on the other side to eliminate the looseness in the axial direction. (At this point, a space is created between the end support and the end plate on one side, but this is not a problem.)
- 5. Re-tighten the hexagon socket head cap screws 4.

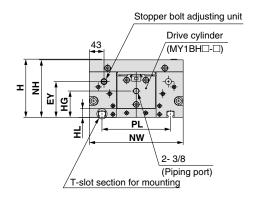

Hexagon socket head cap screw 1 Top cover (Tightening torque 25N·m) Holding block Upper plate Hexagon socket head cap screw 4 (ø50: Tightening torque 5N·m ø63: Tightening torque 11N·m) Coupler End cover Hexagon socket head cap screw 2 (Tightening torque 25N·m) cvlinde (MY1BH) Hexagon socket head cap screw 3 (Tightening torque 3N·m) End plate

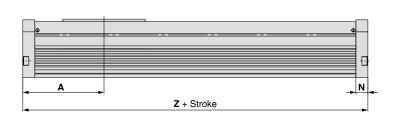
- Fasten the end cover with the hexagon socket head cap screws 2, while making sure that the coupler is in the right direction.
- 7. Place the top cover on the body.
- 8. Insert the holding blocks into the top cover and fasten the upper plates with the hexagon socket head cap screws 1.

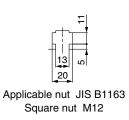
* Drive Cylinder (Series MY1BH)

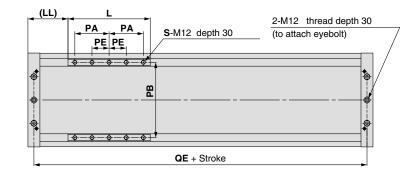
Since series MY1BH is a drive cylinder for series MY1HT, its construction is different from series MY1B. Do not use series MY1B as a drive cylinder, because it will cause damage.

How to order






Series MY1HT

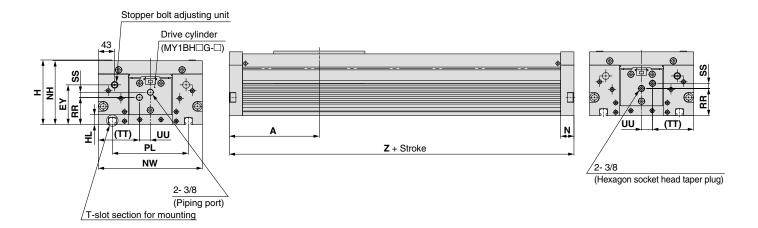

Standard Type Ø50, Ø63

MY1HT Bore size - Stroke L

Dimensions of T-slot for mounting

Model	Α	EY	Н	HG	HL	L	LL	N	NH	NW	PA	PB	PE
MY1HT50	207	97.5	145	63	23	210	102	30	143	254	90	200	_
MY1HT63	237	104.5	170	77	26	240	117	35	168	274	100	220	50

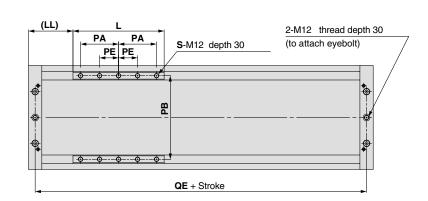
Model	PL	QE	S	Z
MY1HT50	180	384	6	414
MY1HT63	200	439	10	474


Mechanically Jointed Rodless Cylinder High Rigidity/High Precision Guide Type

Series MY1HT

Centralized Piping Type Ø50, Ø63

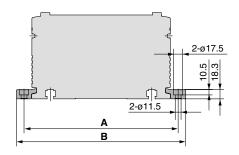
(Refer to page 2-648 regarding centralized piping port variations.)


MY1HT Bore size G — Stroke L

Applicable nut JIS B1163 Square nut M12

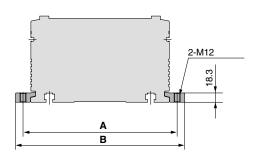
Dimensions of T-slot for mounting

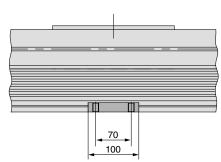
Model	Α	EY	Н	HL	L	LL	N	NH	NW	PA	PB	PE
MY1HT50	207	97.5	145	23	210	102	30	143	254	90	200	_
MY1HT63	237	104.5	170	26	240	117	35	168	274	100	220	50


Model	PL	QE	S	Z	RR	SS	TT	UU
MY1HT50	180	384	6	414	57	10	103.5	23.5
MY1HT63	200	439	10	474	71.5	13.5	108	29

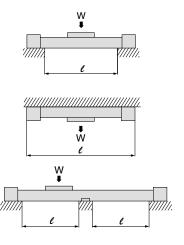
Note) For centralized piping specifications, the drive cylinder has centralized piping specifications (MY1BH \square G- \square).

Series MY1HT


Side Support

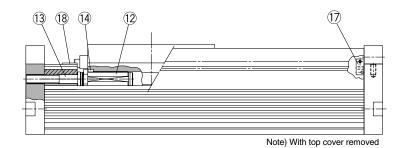

Side support A MY-S63A

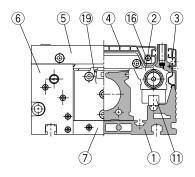
Side support B MY-S63B

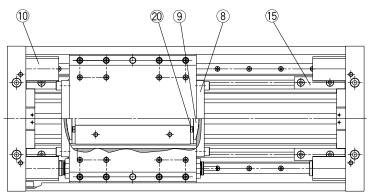

Dimensions			(mm)
Model	Applicable cylinder	Α	В
MY-S63 ^A	MY1HT50	284	314
IVI 1-203B	MY1HT63	304	334

Guide for Using Side Supports

For long stroke operation, the cylinder tube may be deflected depending on its own weight and the load weight. In such a case, use a side support in the middle section. The spacing (ℓ) of the support must be no more than the values shown in the graph on the right.


- 1. If the cylinder mounting surfaces are not measured accurately, using a side support may cause poor operation. Therefore, be sure to level the cylinder tube when mounting. Also, for long stroke operation involving vibration and impact, use of a side support is recommended even if the spacing value is within the allowable limits shown in the graph.
- 2. Support brackets are not for mounting; use them solely for providing support.





Construction

Standard type

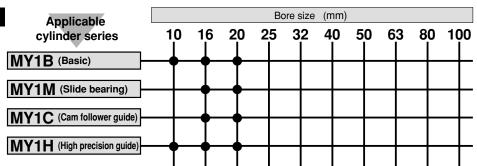
Note) With top cover removed

Parts list

No.	Description	Material	Note					
1	Guide frame	Aluminum alloy	Hard anodized					
2	Slide table	Aluminum alloy	Hard anodized					
3	Side cover	Aluminum alloy	Hard anodized					
4	Top cover	Aluminum alloy	Hard anodized					
5	Upper plate	Aluminum alloy	Hard anodized					
6	End plate	Aluminum alloy	Hard anodized					
7	Bottom plate	Aluminum alloy	Hard anodized					
8	End Cover	Aluminum alloy	Chromated					
9	Coupler	Aluminum alloy	Chromated					
10	Adjuster holder	Aluminum alloy	Hard anodized					
11	Guide	_						
12	Shock absorber	_						
13	Stopper bolt	Carbon steel	Nickel plated					
14	Absorber ring	Rolled steel	Nickel plated					
15	End support	Aluminum alloy	Hard anodized					
16	Top block	Aluminum alloy	Chromated					
17	Side block	Aluminum alloy	Chromated					
18	Slide plate	Special resin						
19	Rodless cylinder	_	MY1BH					
20	Stopper	Carbon steel	Nickel plated					

ALMOTION

Series MY1 Auto Switch Specifications



Applicable auto switches

Aut	to switch models	Electrical entry		
	D-A9□	Grommet (In-line)		
Reed switches	D-A9□V	Grommet (Perpendicular)		
	D-Z7□, Z80	Grommet (In-line)		
	D-M9 □	Grommet (In-line)		
	D-M9□V	Grommet (Perpendicular)		
	D-M9□W	Grommet (2 colour indicator, In-line)		
Solid switches	D-M9□WV	Grommet (2 colour indicator, Perpendicular)		
Cond Cuntonico	D-Y59A, Y59B, Y7P	Grommet (In-line)		
	D-Y69A, Y69B, Y7PV	Grommet (Perpendicular)		
	D-Y7□W	Grommet (2 colour indicator, In-line)		
	D-Y7□WV	Grommet (2 colour indicator, Perpendicular)		

Reed Switches D-A9 / 3 Wire, 2 Wire (Direct Mount Type)

D-A90(V), D-A93(V), D-A96(V)

Auto Switch Specifications

D-A90, D-A90V (without indicator light)

Auto switch part no.	D-A90		D-A90V		
Electrical entry direction	In-line		Perpendicular		
Applicable load	IC circuit, Relay, PLC				
Load voltage	24V DC or less	48V _{DC} ^{AC}	or less	100V _{DC} or less	
Maximum load current	50mA	40	mA	20mA	
Contact protection circuit	None				
Internal voltage drop	1Ω or less	(including I	ead wire len	igth of 3m)	

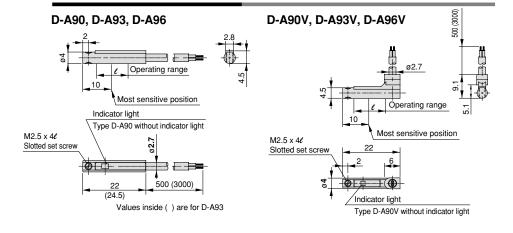
D-A93, A93V, D-A96, A96V (with indicator light)

		•			*		
Auto switch part no.	no. D-A93		D-A93V		D-A96	D-A96V	
Electrical entry direction	In-	-line Perpendicular In-line Perpe			In-line		Perpendicular
Applicable loads	Relay, PLC IC circuit			rcuit			
Load voltage	24VDC	100VAC	24VDC	100VAC	4 to 8VDC		
Load current range and max. load current	5 to 40mA	5 to 20mA	5 to 40mA	5 to 20mA	20mA		
Contact protection circuit				No	ne		
Internal voltage drop	2.4V or les 3V or less	ess (to 20mA) ss (to 40mA) 2.7V or less		0.8V or less			
Indicator light		Red LED lights up when ON					

Heavy duty oil resistant vinyl cord, ø2.7, 0.5m

D-A90(V), D-A93(V) 0.18mm² x 2 wire (Brown, Blue [Red, Black])

D-A96(V) 0.15mm² x 3 wire (Brown, Black, Blue [Red, White, Black])

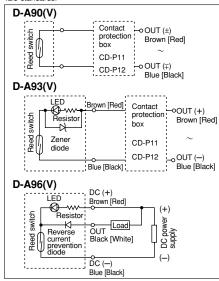

50MΩ or more at 500VDC (between lead wire and case) · Insulation resistance -

 Withstand voltage 1000VAC for 1min. (between lead wire and case) Operating time Ambient temperature – 1.2ms

• Leakage current -· Impact resistance 300m/s² IEC529 standard IP67, watertight (JISC0920)

• For a lead wire length of 3m, "L" is shown at the end of the part number. Example) D-A90L

Auto Switch Dimensions


Auto switch weights

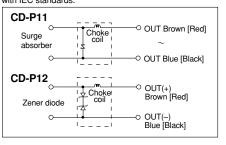
Unit: g

Model	Lead wire length 0.5m	Lead wire length 3m
D-A9/A9□V	8	41

Auto switch internal circuits

Lead wire colors inside () are those prior to conformity with IEC standards.

Contact Protection Boxes/CD-P11, CD-P12

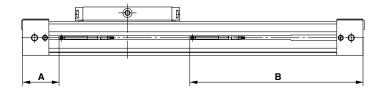

D-A9□ and D-A9□ type switches do not have internal contact protection circuits.

- 1. The operated load is an induction load.
- 2. The length of wiring to the load is 5m or more.
- 3. The load voltage is 100VAC.
- A contact protection box should be used in any of the above situations.

Contact protection box specifications

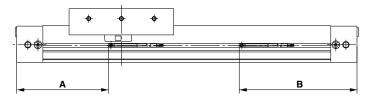
Part No.	CD-P11	CD-P12		
Load voltage	100VAC	24VDC		
Max. load current	25mA	50mA		
* Lead wire lengths	ection side 0.5m			
Load connection side 0.5m				

Contact protection box internal circuits Lead wire colours inside () are those prior to conformity with IEC standards.

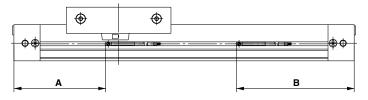


Reed Switch Specifications Series MY1

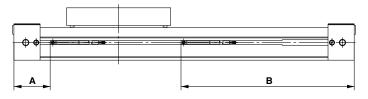
Auto Switch Mounting Positions/D-A9□(V)


Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.

MY1B (Basic type)


Mounting position	ø 10	ø 16	ø 20
Α	20	27	35
В	90	133	165
Operating range ℓ Note)	6	6.5	8.5

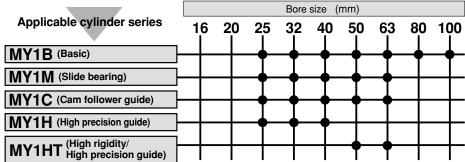
MY1M (Slide bearing type)


Mounting position	ø 16	ø 20
A	70	90
В	90	110
Operating range & Note)	11	7.5

MY1C (Cam follower guide type)

Mounting position	ø 16	ø 20
Α	70	90
В	90	110
Operating range ℓ Note)	11	7.5

MY1H (High precision guide type)


Mounting position	ø 10	ø 16	ø 20
Α	20	27	35
В	90	133	165
Operating range ℓ Note)	11	6.5	8.5

Reed Switches D-Z7, Z80/3 Wire, 2 Wire (Direct Mount Type)

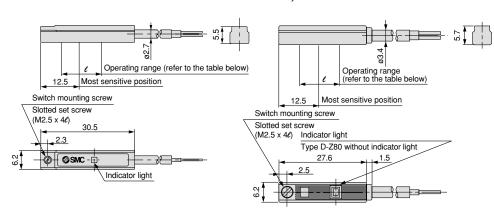
D-Z73, D-Z76, D-Z80

Auto Switch Specifications

D-Z7□ (with indicator light)

Auto switch part no.	D-	D-Z76		
Electrical entry direction		In-line		
Applicable load	Rela	y, PLC	IC circuit	
Load voltage	24VDC 100VAC		4 to 8VDC	
Load current range and max. load current	5 to 40mA 5 to 20mA		20mA	
Contact protection circuit	None			
Internal voltage drop	2.4V or less (to 20mA)/3V or less (to 40mA)		0.8V or less	
Indicator light	Red LED lights up when ON			

D-Z80 (without indicator light)


= === (a.aa.a.a.ag)					
Auto switch part no.	D-Z80				
Electrical entry direction	In-line In-line				
Applicable load	Relay, PLC, IC circuit,				
Load voltage	24V _{DC} or less 48V _{DC} or less 100V _{DC}				
Maximum load current	50mA 40mA 20mA				
Contact protection circuit	None				
Internal voltage drop	1Ω or less (including lead wire length of 3m)				

- Leakage current - None
- Operating time Heavy duty oil resistant vinyl cord, ø3.4. Lead wires
 - 0.2mm², 2 wire (Brown, Blue (Red, Black]), 3 wire (Brown, Black, Blue [Red, White, Black]), 0.5m* D-Z73 only ø2.7, 0.18mm², 2 wire)
- Impact resistance 300m/S2
- $50M\Omega$ or more at 500VDC (between lead wire and case) · Insulation resistance
- Withstand voltage 1500VAC for 1min. (between lead wire and case)
 —10 to 60°C
- Ambient temperature
- Enclosure _____ IEC529 standard IP67, watertight (JISC0920)

 * For a lead wire length of 3m, "L" is shown at the end of the part number. Example) D-Z73L

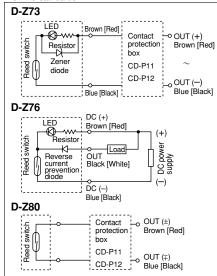
Auto Switch Dimensions

D-Z73 D-Z76, Z80

Bore size	Bore	size (mm)
Operating range	180	200
Operating range ℓ (mm)	15	15

Note) There is a guide including hystersis, but is not

guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.


Auto switch weights

Unit: g

Model	Lead wire length 0.5m	Lead wire length 3m
D-Z73	7	31
D-Z76	10	55
D-Z80	9	49

Auto switch internal circuits

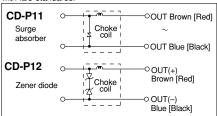
Lead wire colors inside () are those prior to conformity with IEC standards.

Contact Protection Boxes/CD-P11, CD-P12

D-Z7□ and D-Z80□ type switches do not have internal contact protection circuits.

- 1. The operated load is an induction load.
- 2. The length of wiring to the load is 5m or more.
- The load voltage is 100VAC

A contact protection box should be used in any of the above situations.

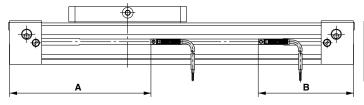

Contact protection box specifications

Part No.	CD-P11	CD-P12
Load voltage	100VAC	24VDC
Max. load current	25mA	50mA

D-280 type switches are 100VAC or less. Since there is no particular specified voltage, select a type based on the operating voltage.

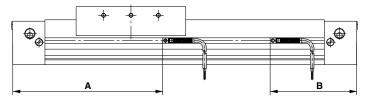
Contact protection box internal circuits

Lead wire colours inside () are those prior to conformity with IEC standards.

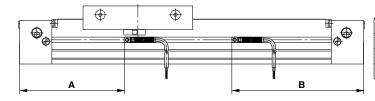


Reed Switch Specifications Series MY1

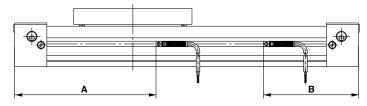
Auto Switch Mounting Positions/D-Z7□, **D-Z80**□


Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.

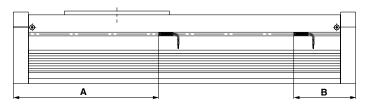
MY1B (Basic type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63	ø 80	ø 100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range & Note)	8.5	11.5	11.5	11.5	11.5	11.5	11.5

MY1M (Slide bearing type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range ℓ Note)	12	12	12	11.5	11.5

MY1C (Cam follower guide type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range ℓ Note)	12	12	12	11.5	11.5

MY1H (High precision guide type)

Mounting position	ø 25	ø 32	ø 40
Α	131.5	180	216
В	88.5	100	124
Operating range ℓ^{Note}	8.5	11.5	11.5

MY1HT (High rigidity/High precision guide type)

ø 50	ø 63
290.5	335.5
123.5	138.5
11	11
	290.5 123.5

Solid State Switches D-M9/3 Wire, 2 Wire (Direct Mount Type)

Bore size (mm) D-M9N (V), D-M9P (V), D-M9B (V) **Applicable** 10 25 63 80 100 16 20 32 40 50 cylinder series MY1B (Basic) MY1M (Slide bearing) MY1C (Cam follower guide) MY1H (High precision guide)

Auto Switch Specifications

D-M9□, D-M9□V (with indicator light)

	•					
Auto switch part no.	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3 w	ire		2 v	vire
Output type	N	PN	PI	NΡ	_	_
Applicable load		IC circuit, Relay, PLC			24VDC R	elay, PLC
Power supply voltage		5, 12, 24VDC (4.5 to 28VDC)			_	
Current consumption		10mA or less			_	_
Load voltage	28VDC	or less	_	_	24VDC (10	to 28VDC)
Load current		or less 80mA or less		5 to 40mA		
Internal voltage drop	1.5V or less (0	5V or less (0.8V or less at 10mA load current) 0.8V or less		4V o	r less	
Leakage current		100μA or less at 24VDC			0.8mA or les	s at 24VDC
Indicator light			Red LED light	s up when ON		

• Lead wires Heavy duty oil resistant vinyl cord, ø2.7, 0.5m

 $D\text{-M9N(V)},\,D\text{-M9P(V)}\quad 0.15\text{mm}^2\,x\,3\,\text{wire (Brown,Black, Blue [Red, White, Black])}$

D-M98(V) 0.18mm2 x 2 wire (Brown, Blue [Red, Black])

50M Ω or more at 500VDC (between lead wire and case) • Insulation resistance

 Withstand voltage 1000VAC for 1min. (between lead wire and case)

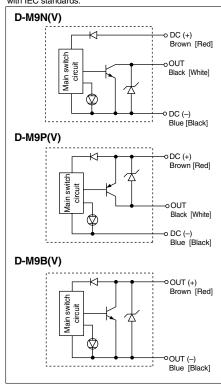
Lights up when ON Indicator light

 Ambient temperature -10 to 60°C

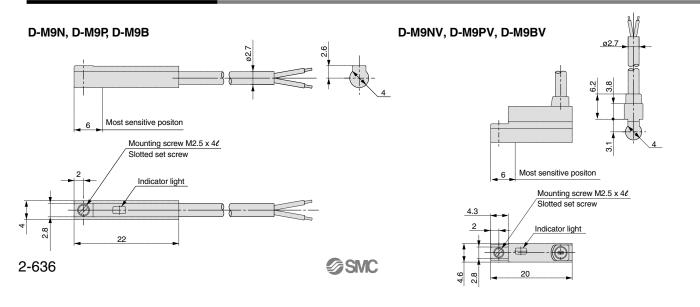
 Operating time 1ms or less • Impact resistance

Find of the part number:

- For a lead wire length of 3m, "L" is shown at the end of the part number:


- Example) D-M9NL

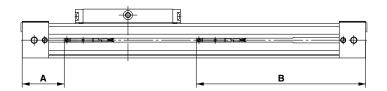
Auto switch weights


						Orint. 9
Model	D-M9N	D-M9P	D-M9B	D-M9NV	D-M9PV	D-M9BV
Lead wire length 0.5m	7	7	6	7	7	6
Lead wire length 3m	37	37	31	37	37	31

Auto switch internal circuits

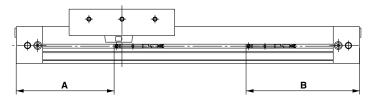
Lead wire colours inside () are those prior to conformity with IEC standards.

Auto Switch Dimensions

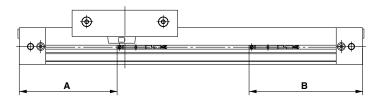


Series MY1 **Solid State Switch Specifications**

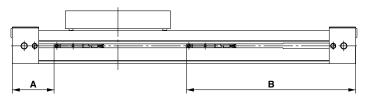
Auto Switch Mounting Positions/D-M9□, D-M9□V


Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.

MY1B (Basic type)


Mounting position	ø 10	ø 16	ø 20
Α	24	31	39
В	86	129	161
Operating range ℓ Note)	3	4	5

MY1M (Slide bearing type)


Mounting position	ø 16	ø 20
Α	74	94
В	86	106
Operating range ℓ Note)	8.5	6.5

MY1C (Cam follower guide type)

Mounting position	ø 16	ø 20
A	74	94
В	86	106
Operating range ℓ Note)	8.5	6.5

MY1H (High precision guide type)

ø 10	ø 16	ø 20
24	31	39
86	129	161
3	4	∂ ₋ 637
	24 86	24 31 86 129

2 Color Indication Solid State Switches D-M9□W/3 Wire, 2 Wire

I Inite o

Bore size (mm) D-M9NW(V), D-M9PW(V), D-M9BW(V)**Applicable** 80 20 25 100 10 16 32 40 50 63 cylinder series MY1B (Basic) MY1M (Slide bearing) MY1C (Cam follower guide) MY1H (High precision guide)

Auto Switch Specifications

D-M9 W. D-M9 WV (with indicator light)

Auto switch part no	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
•	D-INIBIAAA	-	D-INISE W		D-INI3D AA	D-INISDAA A
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type		3 w	/ire		2 v	/ire
Output type	NF	PN	PI	NP	_	_
Applicable load		IC circuit, F	Relay, PLC		24VDC R	elay, PLC
Power supply voltage	5, 12, 24VDC (4.5 to 28VDC)			_		
Current consumption	10mA or less			_	_	
Load voltage	28VDC	or less	ı	_	24VDC (10	to 28VDC)
Load current	40mA	or less	80mA	or less	5 to 40mA	
Internal voltage drop	1.5V or less (C	.8V or less at 10mA load current)	0.8V or less		4V or less	
Leakage current	100μA or less at 24VDC			0.8mA or les	s at 24VDC	
Indicator light				Red LED Green LI		

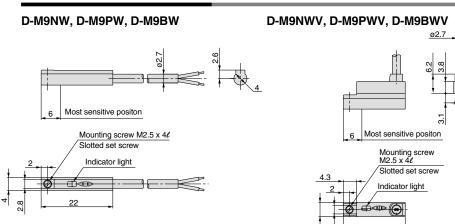
Heavy duty oil resistant vinyl cord, ø2.7, 0.5m

D-M9NW(V), D-M9PW(V) 0.15mm² x 3 wire (Brown, Black, Blue [Red, White, Black]) D-M98W(V) 0.18mm² x 2 wire (Brown, Blue [Red, Black])

50M Ω or more at 500VDC (between lead wire and case) Insulation resistance

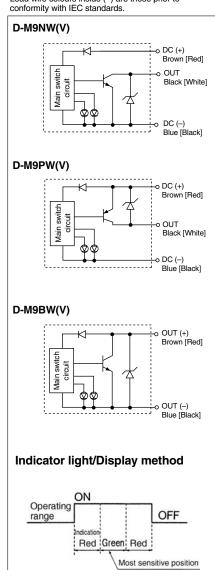
- 1000VAC for 1min. (between lead wire and case) · Withstand voltage

- -10 to 60°C • Operating time 1ms or less • Impact resistance --- 1000m/s² Ambient temperature


- IEC529 standard IP67, watertight (JISC0920) • Enclosure -

• For a lead wire length of 3m, "L" is shown at the end of the part number. Example) D-M9NWL

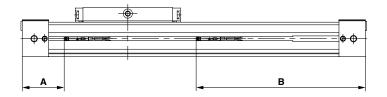
Auto switch weights


onit. g						
Model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Lead wire length 0.5m	7	7	7	7	7	7
Lead wire length 3m	34	34	34	34	32	32

Auto Switch Dimensions

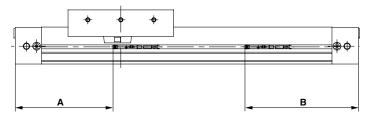
Auto switch internal circuits

Lead wire colours inside () are those prior to conformity with IEC standards.

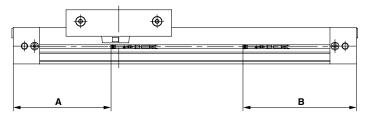


Solid State Switch Specifications Series MY1

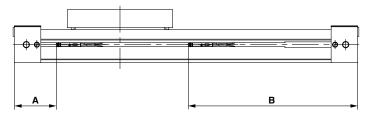
Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.


Auto Switch Mounting Positions/D-M9□W, D-M9□WV

MY1B (Basic type)


Mounting position	ø 10	ø 16	ø 20
Α	24	30	38
В	86	130	162
Operating range ℓ Note)	3	4	5

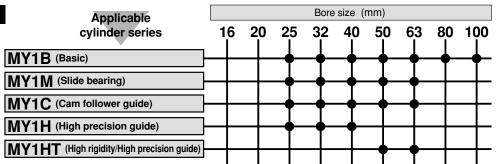
MY1M (Slide bearing type)


Mounting position	ø 16	ø 20
Α	73	93
В	87	107
Operating range ℓ Note)	8.5	6.5

MY1C (Cam follower guide type)

Mounting position	ø 16	ø 20	
Α	73	93	
В	87	107	
Operating range ℓ Note)	8.5	6.5	

MY1H (High precision guide type)


Mounting position	ø 10	ø 16	ø 20
Α	24	30	38
В	86	130	162
Operating range & Note)	3	4	5

Solid State Auto Switches

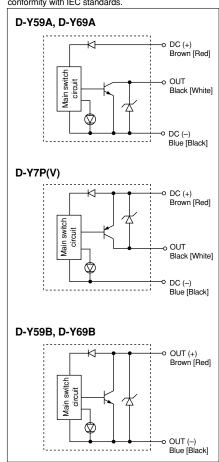
D-Y5, Y6, Y7P(V)/3 Wire, 2 Wire (Direct Mount Type)

D-Y59^A_B, D-Y69^A_B, D-Y7P(V)

Auto Switch Specifications

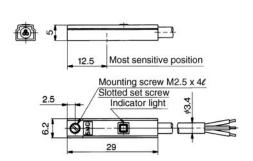
D-Y5. D-Y6. D-Y7P. D-Y7PV (with indicator light)

,,	11, 2 111 t (trial malester light)						
Auto switch model no.	D-Y59A	D-Y69A	D-Y7P	D-Y7PV	D-Y59B	D-Y69B	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3 v	vire		2 v	vire	
Output type	N	PN	PI	NP	-	_	
Applicable load		IC circuit, I	Relay, PLC		24VDC R	elay, PLC	
Power supply voltage		5, 12, 24VDC (4.5 to 28VDC)			_		
Current consumption		10mA or less			-	_	
Load voltage	28VDC	or less	-	_	24VDC (10	to 28VDC)	
Load current	40mA	or less	80mA	or less	5 to 4	40mA	
Internal voltage drop		5V or less s at 10mA load current) 0.8V or less			4V o	r less	
Leakage current	100μA or less at 24VDC			0.8mA or le	ess at 24DC		
Indicator light			Red LED light	s up when ON			


- · Operating time 1ms or less
- · Lead wires Heavy duty oil resistant flexible vinyl cord,
 - ø3.4, 0.15mm², 3 wire (Brown, Black, Blue [Red, White, Black]), 2 wire (Brown, Blue [Red, Black]) 0.5m²
- * For a lead wire length of 3m, "L" is shown at the end of the part number. Example) D-Y59AL
- · Impact resistance 1000m/S²
- Insulation resistance $50M\Omega$ or more at 500VDC (between lead wire and case)
- · Withstand voltage 1000VAC for 1min. (between lead wire and case)
- Ambient temperature -10 to 60°C
- IEC529 standard IP67, watertight (JISC0920)

Auto switch weights

Auto switch weights		Unit: g
Model	Lead wire length 3m	
D-Y59A, Y69A, Y7P, Y7PV	10	53
D VEOD VEOD	٥	50

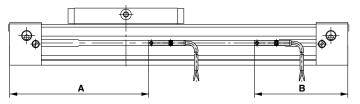

Auto switch internal circuits

Lead wire colours inside () are those prior to conformity with IEC standards.

Auto Switch Dimensions

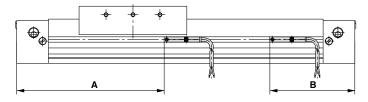
D-Y59A, D-Y7P, D-Y59B

D-Y69A, D-Y7PV, D-Y69B

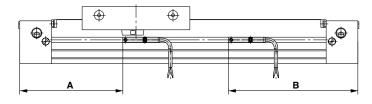


Solid State Switch Specifications Series MY1

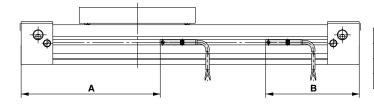
Auto Switch Mounting Positions/D-Y5, D-Y6, D-Y7P(V)


Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as $\pm 30\%$) depending on the ambient environment.

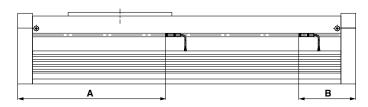
MY1B (Basic type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63	ø 80	ø 100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range & Note)	6	9	10	3.5	3.5	3.5	3.5

MY1M (Slide bearing type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range ℓ Note)	5	5	5	5.5	5.5

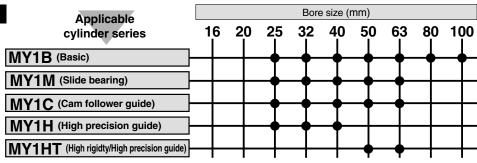
MY1C (Cam follower guide type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range ℓ Note)	5	5	5	5.5	5.5

MY1H (High precision guide type)

Mounting position	ø 25	ø 32	ø 40
A	131.5	180	216
В	88.5	100	124
Operating range & Note)	6	9	10

MY1HT (High rigidity/High precision guide type)



Mounting position	ø 50	ø 63
Α	290.5	335.5
В	123.5	138.5
Operating range & Note)	5	5

Solid State Switches D-Y7 W/3 Wire, 2 Wire (Direct Mount Type)

D-Y7NW(V), D-Y7PW(V), D-Y7BW(V)

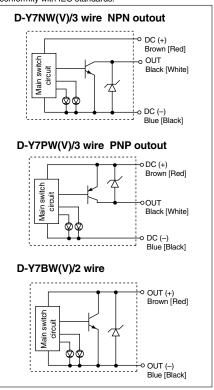
Auto Switch Specifications

D-Y7 W, D-Y7 WV (with indicator light)

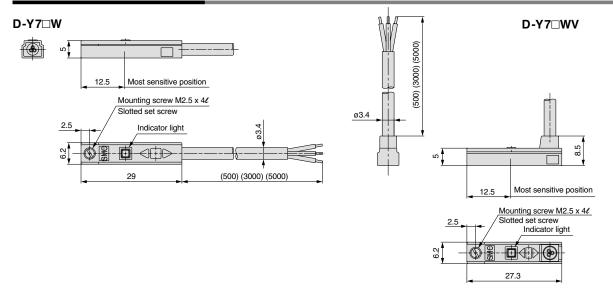
Auto switch part no	D-Y7NW	D-Y7NWV	D-Y7PW	D-Y7PWV	D-Y7BW	D-Y7BWV	
Electrical entry direction	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular	
Wiring type		3 w	/ire		2 wire		
Output type	NI	PN	PI	NΡ	_	_	
Applicable load		IC circuit, F	Relay, PLC		24VDC R	elay, PLC	
Power supply voltage		5,12, 24VDC (4.5 to 28VDC)				_	
Current consumption		10mA or less				_	
Load voltage	28VDC	or less	_	_	24VDC (10 to 28VDC)		
Load current	40mA	or less	80mA	or less	5 to 40mA		
Internal voltage drop		or less 10mA load current) 0.8V or less			4 or	less	
Leakage current	100μA or less at 24VDC				0.8mA or les	s at 24VDC	
Indicator light	Actuated position						

- Operating time 1ms or less
- Lead wires Heavy duty oil resistant flexible vinyl cord, ø3.4, 0.15mm², 3 wire (Brown, Black, Blue [Red, White, Black]), 2 wire (Brown, Blue
- [Red, Black]), 0.5m*

 * For a lead wire length of 3m, "L" is shown at the end of the part number. Example) D-Y7NWL
- Impact resistance 1000m/s
- Insulation resistance 50MΩ or more at 500VDC (between lead wire and case)
- Withstand voltage 1000VAC for 1min.


 (between lead wire and case)
- Ambient temperature —-10 to 60°C
- Enclosure IEC529 standard IP67, watertight (JISC0920)

Auto switch weights


Auto Switch Weights		Unit: g
Model	Lead wire length 0.5m	Lead wire length 3m
D-Y7NW, Y7PW, Y7BW	10	53
D-Y7NWV, Y7PWV, Y7BWV	9	50

Auto switch internal circuits

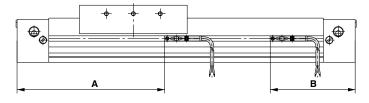
Lead wire colours inside () are those prior to conformity with IEC standards.

Auto Switch Dimensions

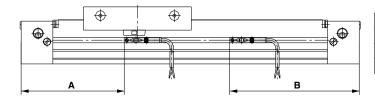
Solid State Switch Specifications

Series MY1

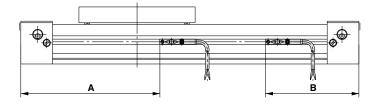
Auto Switch Mounting Positions/D-Y7 W, D-Y7 WV


Note) The operating range is a guide including hysteresis, but is not guaranteed. There may be large variations (as much as ±30%) depending on the ambient environment.

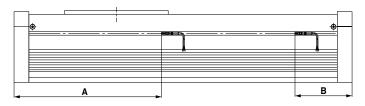
MY1B (Basic type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63	ø 80	ø100
Α	131.5	180	216	272.5	317.5	484.5	569.5
В	88.5	100	124	127.5	142.5	205.5	230.5
Operating range $\ell^{\mathrm{Note})}$	6	9	10	3.5	3.5	3.5	3.5

MY1M (Slide bearing type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	139.5	184.5	229.5	278.5	323.5
В	80.5	95.5	110.5	121.5	136.5
Operating range & Note)	5	5	5	5.5	5.5

MY1C (Cam follower guide type)


Mounting position	ø 25	ø 32	ø 40	ø 50	ø 63
Α	97.5	127.5	157.5	278.5	323.5
В	122.5	152.5	182.5	121.5	136.5
Operating range & Note)	5	5	5	5.5	5.5

MY1H (High precision guide type)

Mounting position	ø 25	ø 32	ø 40
Α	131.5	180	216
В	88.5	100	124
Operating range ℓ Note)	6	9	10

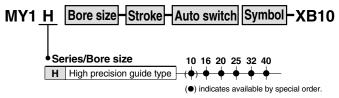
MY1HT (High rigidity/High precision guide type)

Mounting position	ø 50	ø 63
Α	290.5	335.5
В	123.5	138.5
Operating range & Note)	5	5

Series MY1 Order Made Specifications

Contact SMC for detailed dimensions, specifications and lead times.

Order made application list

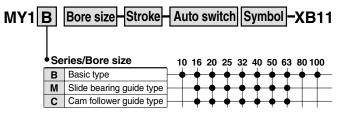

		Intermediate stroke XB10	Long stroke XB11	Helical insert threads X168	Dust seal band NBR XC67	Holder mounting bracket X416, X417	Copper-free 20-
MY1B	Basic type	Standard	•	•	•	•	•
MY1M	Slide bearing guide type	Standard	•	•	•	•	•
MY1C	Cam follower guide type	Standard	•	•	•	•	•
MY1H	High precision guide type	•	•	•	•	•	•
MY1HT	High rigidity/High precision guide type				•		•

1 Intermediate Stroke

-XB10

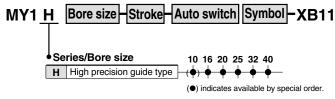
Intermediate strokes are available within the standard stroke range. The stroke can be set in 1mm increments. Series other than MY1H are available with intermediate strokes as standard.

■ Stroke range: 51 to 599mm


Example) MY1H40G-599L-Z73-XB10

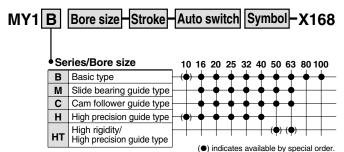
2 Long Stroke

-XB11


Available with long strokes exceeding the standard strokes. The stroke can be set in 1mm increments.

■ Stroke range: 2001 to 5000mm (Ø10, Ø16 are 2001 to 3000mm.)

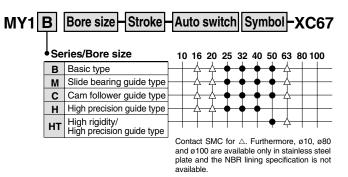
Example) MY1B40G-4999L-Z73-XB11


■ Stroke range: 601 to 1500mm (Ø16, Ø20 are 601 to 1000mm.)

Example) MY1H40G-999L-Z73-XB11

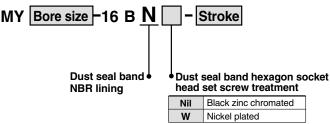
3 Helical Insert Thread Specification -X168

The mounting threads of the slider are changed to helical insert threads. The thread size is the same as standard.



Example) MY1B40G-300L-Z73-X168

4 Dust Seal Band NBR Lining Specification -XC67


The standard vinyl chloride lining specification is changed to NBR lining. Improved oil resistance and peeling resistance.

Note) Consult SMC for specific oil resistance.

Example) MY1B40G-300L-Z73-XC67

For ordering dust seal band (NBR lining) only

Refer to "Dust seal band" in the construction figures of each series for details.

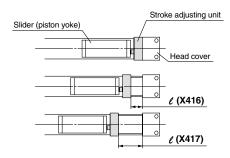
Example) MY25-16BNW-300

Series MY1

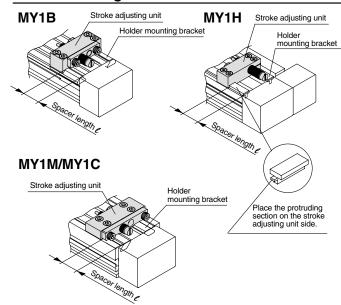
Order Made Specifications

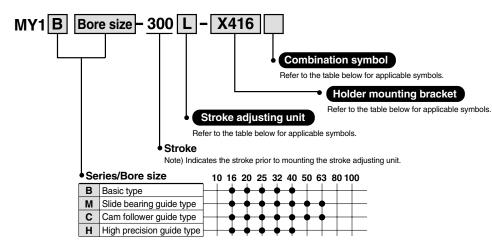
Contact SMC for detailed dimensions, specifications and lead times.

-X416, X417


Holder mounting brackets are used to fasten the stroke adjusting unit at an intermediate stroke position.

Holder mounting bracket 10...... -X416 Holder mounting bracket 20....... -X417


Fine stroke adjustment range

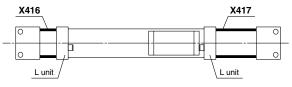

(Treated as a special order when exceeding the adjustment ranges shown below.) Unit: mm

	-X416 (one side)					-X417 (one side)				
Bore size	Spacer	Α	djustme	ent rang	je	Spacer	Adjustment range			je
(mm)	length ℓ	MY1B	MY1M MY1C MY1H		length ℓ	MY1B	MY1M	MY1C	MY1H	
16	5.6	−5.6 to −11.2				11.2		–11.2 t	o –16.8	
20	6		−6 to −12				-12 to -18			
25	11.5		-11.5 to -23					-23 to	-34.5	
32	12		-12 t	o –24		24		-24 t	o –36	
40	16		-16 to -32			32		-32 t	o –48	
50	20	_	–20 to –40 —			40	_	-40 t	o –60	_
63	25	_	–25 t	o –50	_	50	_	–50 t	o –75	_

Holder Mounting Bracket Illustration

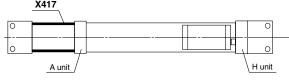
0	Holder		Mounti	ng pcs.	Combination description
Stroke adjusting unit	mounting bracket	Symbol	X416	X417	Combination description
A, L, H, AS, LS, HS		Nil	1		X416 on one side
A, L, H		W	2		X416 on both sides
А, L, П		Z	1	1	X416 on one side, X417 on the other side
AL, AH		Α	1		X416 on A unit side
AL, LH	X416	L	1		X416 on L unit side
AH, LH		Н	1		X416 on H unit side
AL, AH		AZ	1	1	X416 on A unit side, X417 on the other side
AL, LH		LZ	1	1	X416 on L unit side, X417 on the other side
AH, LH		HZ	1	1	X416 on H unit side, X417 on the other side
A, L, H, AS, LS, HS		Nil		1	X417 on one side
A, L, H		W		2	X417 on both sides
AL, AH	X417	Α		1	X417 on A unit side
AL, LH		L		1	X417 on L unit side
AH, LH		Н		1	X417 on H unit side

Note) For AS, LS and HS, the stroke adjusting unit is mounted on one side only.

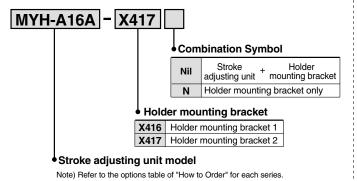

Series MY1 **Order Made Specifications**

Contact SMC for detailed dimensions, specifications and lead times.

-X416, X417


Example

·L units with one each of X416 and X417 MY1B25G-300L-X416Z

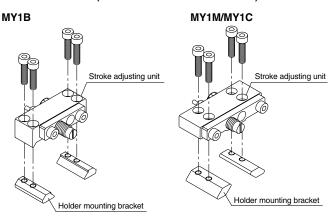


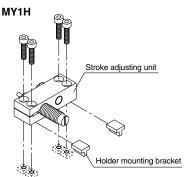
· A and H units, where X417 is mounted on A unit only and nothing on H unit

MY1B25G-300AH-X417A

How to order single pieces of stroke adjusting unit and holder mounting bracket

 $MY1B \rightarrow P.$ 6

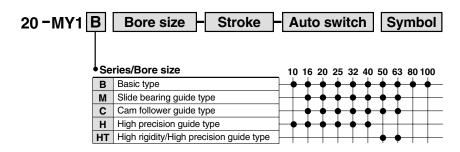

MY1M→P. 28


MY1C→ P. 44

MY1H→ P. 60

Example

- · Stroke adjusting unit with holder mounting bracket MY-A25L-X416 (L unit for MY1B25 and X416 bracket)
- · Holder mounting bracket only MY-A25L-X416N (X416 bracket for MY1B25 and L unit)



Note) For MY1H, the parts are packed together when shipped.

Copper-free Specification

20-

Copper-free compatible.

Series MY1/Specific Product Precautions

Be sure to read before handling.

⚠ Caution Mounting

Do not apply strong impact or excessive moment to the slide table (slider)

- Since the slide table (slider) is supported by precision bearings (MY1C, MY1H) or resin bearings, do not subject it to strong impact or excessive moment when mounting work pieces.
- 2. Perform careful alignment when connecting to a load which has an external guide mechanism.
 - Mechanically jointed rodless cylinders can be used with a direct load within the allowable range for each type of guide, but careful alignment is necessary for connection to a load which has an external guide mechanism.

Since fluctuation of the center axis increases as the stroke becomes longer, use a method of connection which can absorb the variations (floating mechanism).

Furthermore, use the special floating brackets (pages 18 to 20) which have been provided for series MY1B.

- Avoid use in environments where a cylinder will come in contact with coolants, cutting oil, water, adhesive matter, or dust, etc. Also avoid operation with compressed air that contains drainage or foreign matter, etc.
 - Foreign matter or liquids on the cylinder's interior or exterior can wash out the lubricating grease, which can lead to deterioration and damage of dust seal band and seal materials, causing a danger of malfunction.

When operating in locations with exposure to water and oil, or in dusty locations, provide protection such as a cover to prevent direct contact with the cylinder, or mount so that the dust seal band surface faces downward, and operate with clean compressed air.

⚠ Caution

- Do not inadvertently move the setting of the guide adjustment unit.
 - The guide is already adjusted at the factory, and readjustment is not necessary under normal operating conditions. Therefore, do not inadvertently move the setting of the guide adjustment unit. However, series other than series MY1H allow readjustment and bearing replacement, etc.

In this case, refer to the outline for bearing replacement in the instruction manual.

⚠ Caution

- External air leakage may occur.
 - In operating conditions where negative pressure is generated inside the cylinder because of external or inertial forces, etc., take note that external air leakage may occur due to separation of the seal belt.


Series MY1/Specific Product Precautions

Be sure to read before handling.

⚠ Caution

Centralized Piping Port Variations

• Head cover ports can be freely selected to best suit different situations.

