

Cushioning components

2019/01 – Subject to change

Cushioning components Product range overview

Function	Type code	Version	Description	Area of application				
Shock	Flastomer	shock absorbers						
absorbers	DYEF-Y1		Mechanical shock absorber with flexible rubber buffer	Mini slide DGSL				
			Cushioning stroke cannot be adjusted					
		6Jullion	No fixed stop					
			 Continuous mounting thread with internal hex 					
	DYEF-Y1F		Mechanical shock absorber with flexible rubber buffer	Mini slide DGSL				
			Cushioning stroke can be adjusted	Swivel module DSM-B				
		6 Million	With fixed stop					
			Continuous mounting thread with internal hex					
	Adjustable		- Understanden bescher with an increation					
	DYSR		Hydraulic shock absorber with spring return	-				
		a alla	Adjustable cushioning hardness					
	Solf-adjust	ing						
	Self-adjust YSR-C		Hydraulic shock absorber with path-controlled flow control function	Linear drive DGPL				
	ISK-C		Rapidly increasing cushioning force curve	Linear drive DGPL Linear drive DGC				
		CF	Short cushioning stroke	Linear drive unit SLE				
			Suitable for rotary drives					
			Maintenance-free					
			Continuous mounting thread					
	DYSC	-	Hydraulic shock absorber with path-controlled flow control function	Swivel module DSM-B				
	DISC	- Stude	Rapidly increasing cushioning force curve	 Swivel/linear drive unit 				
		C	 Short cushioning stroke 	DSL-B				
			Suitable for rotary drives	 Semi-rotary drive DRRD 				
			Maintenance-free	Sein fotary anve Brite				
			Metal end position on the housing					
			 Continuous mounting thread with internal hex 					
	YSRW		Hydraulic shock absorber with path-controlled flow control function	Linear drive DGC				
		and the second s	 Slowly increasing cushioning force curve 	Handling module HSP,				
		Comments of the second s	 Long cushioning stroke 	HSW				
			Suitable for low-vibration operation					
			Short cycle times possible					
			Maintenance-free					
			Continuous mounting thread with spanner flat					
	DYSS		Hydraulic shock absorber with path-controlled flow control function	Linear drive DLGF				
		Thull	Rapidly increasing cushioning force curve	 Mini slide DGST 				
		C2	Short cushioning stroke					
			Suitable for low-vibration operation					
			Not suitable for rotary drives					
			Maintenance-free					
			Metal end position on the housing					
			Continuous mounting thread with internal hex					
	DYSW		Hydraulic shock absorber with path-controlled flow control function	Mini slide DGSL				
		- The second	Slowly increasing cushioning force curve	 Handling module HSW 				
		O Star	Long cushioning stroke	<u> </u>				
			Suitable for low-vibration operation					
			Short cycle times possible					
			Maintenance-free					
			 Metal end position on the housing 					
]	 Continuous mounting thread with internal hex 					

Cushioning components Product range overview

Stroke	Energy absorption per stroke	Position sensing	Free of copper and PTFE	→ Page/Internet
[mm]	Ul			
S	l	l.		
0.9; 1.0; 1.2; 1.3; 1.5	0.015 0.55	-		7
1.7; 2.8; 3.1; 3.4; 3.7; 4.2; 5; 4.8; 7	0.005 1.2	_	-	10
8, 12, 20, 25, 40, 60	4 384	-	-	14
4 5 0 40 40 50 55	0 (200			10
4, 5, 8, 10, 12, 20, 25, 40, 60	0.6 380			18
		_	4 20	
4, 5, 8, 12, 18, 25	0.6 100			22
		-	•	
8, 10, 14, 17, 20, 26, 34	1.3 70			26
		-	•	
4. 5. 8. 10. 12	0.110			30
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		-		
6, 8, 10, 14, 17, 20	0.8 12			34
		_	-	
	[mm] s 0.9; 1.0; 1.2; 1.3; 1.5 1.7; 2.8; 3.1; 3.4; 3.7; 4.2; 5; 4.8; 7 8, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60 4, 5, 8, 10, 12, 20, 25, 40, 60	per stroke per stroke 0.9; 1.0; 1.2; 1.3; 1.5 0.015 0.55 1.7; 2.8; 3.1; 3.4; 3.7; 0.005 1.2 4.2; 5; 4.8; 7 0.005 1.2 8, 12, 20, 25, 40, 60 4 384 4.5, 8, 10, 12, 20, 25, 40, 60 4 380 4, 5, 8, 10, 12, 20, 25, 40, 60 4 380 4, 5, 8, 10, 12, 20, 25, 40, 60 1.3 70 4, 5, 8, 12, 18, 25 0.6 100 4, 5, 8, 10, 14, 17, 20, 26, 34 1.3 70	per stroke J) per stroke J) s - 1.7; 2.8; 3.1; 3.4; 3.7; 4.2; 5; 4.8; 7 0.005 1.2 8, 12, 20, 25, 40, 60 4 384 - - 4, 5, 8, 10, 12, 20, 25, 40, 60 0.6 380 40, 60 - 4, 5, 8, 12, 18, 25 0.6 100 - - 4, 5, 8, 10, 14, 17, 20, 26, 34 1.3 70 - - 4, 5, 8, 10, 12 0.1 10	per stroke JJ job job job 0.9; 1.0; 1.2; 1.3; 1.5 0.015 0.55 - - • 1.7; 2.8; 3.1; 3.4; 3.7; 4.2; 5; 4.8; 7 0.005 1.2

Cushioning components Product range overview

Function	Type code	Version	Description	Area of application
Stop	Self-adjust	ing		
element	YSRWJ	CTANANT THE	 Cushioning with self-adjusting, progressive hydraulic shock absorber (YSRW) Slowly increasing cushioning force curve Adjustable cushioning stroke End-position sensing with proximity sensors SME/SMT-8 Precision end-position adjustment Stop elements YSRWJ can be used for a wide variety of applications in handling and assembly technology. 	-
Hydraulic	Adjustable			
cushioning cylinders	DYHR	E-SUM	 Hydraulic cushioning cylinder for constant, slow braking speeds across the entire stroke Braking speed can be precisely adjusted Built-in compression spring returns the piston rod to the initial position Suitable for slow feed speeds in the range up to 0.1 m/s 	-

Cushioning components Product range overview

Size	Stroke	Energy absorption per stroke	Position sensing	Free of copper and PTFE	→ Page/Internet					
	[mm]	[1]								
Self-adjusting										
5, 7, 8	8, 10, 14	1 3			38					
				-						
Adjustable										
16, 20, 25, 32	20, 25, 40, 50, 60	32 384			42					
			-	-						

Shock absorbers DYEF- ... -Y1, without fixed stop

		DYEF] – [S	-	M8] – [Y1
Туре								
DYEF	Shock absorber		_					
		1						
Version								
	Long							
S	Short							
Size								
Design charac	teristic							
Y1	Internal hex							

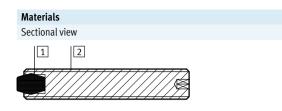
Shock absorbers DYEF- ... -Y1, without fixed stop

FESTO

Technical data

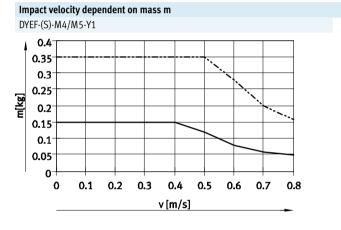
- **D** - Size M4 ... M16 -Stroke length -0.9 ... 1.5 mm

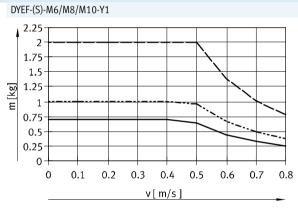
General technical data										
Size		M4	M5	M6	M8	M10	M12	M14	M16	
Stroke	[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3	
Mode of operation		Elastomer cu	shioning witho	ut metal fixed	stop					
Cushioning		Not adjustab	le							
Cushioning length	[mm]	0.9	1.5	1.5	1.3	1	1.2	1.2	1.3	
Type of mounting		Via lock nut	Via lock nut							
Max. impact velocity	[m/s]	0.8	0.8							
Mounting position		Any	Any							
Product weight	[g]	2.1	3.6	6	14	23	45.5	82.5	106	
S	[g]	1.1	2	3	8.6	12	15	31	40	
Ambient temperature	[°C]	0 +60	4					4		
Corrosion resistance class CRC ¹⁾		2								


Corrosion resistance class CRC 2 to Festo standard FN 940070
 Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Energy [J]								
Size	M4	M5	M6	M8	M10	M12	M14	M16
Max. energy absorption per stroke 0.015 0.05 0.08 0.12 0.25 0.35 0.45 0.55							0.55	
Mass range [kg]								
Mass range [kg] Size	M4	M5	M6	M8	M10	M12	M14	M16

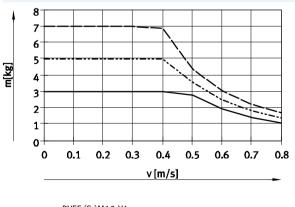
Shock absorbers DYEF- ... -Y1, without fixed stop


FESTO


Technical data

Shock absorber

SHOCK	absorber	
1	Buffer	Nitrile rubber
2	Housing	High-alloy steel
-	Seals	Nitrile rubber
	Note on materials	Free of copper and PTFE
		RoHS-compliant

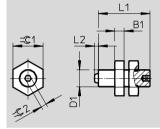


DYEF-(S-)M4-Y1 DYEF-(S-)M5-Y1

DYEF-(S)-M12/M14/M16-Y1

 DYEF-(S-)M12-Y1

 DYEF-(S-)M14-Y1


 DYEF-(S-)M16-Y1

Shock absorbers DYEF- ... -Y1, without fixed stop Technical data

FESTO

DYEF-S-M-... - Short version

Size	B1	D1	L1 DYEF-M DYEF-S-M		L2	=©1	=©2	Max. tightening torque ∹©1
					+0.3			[Nm]
M4	2.2	M4x0.5	22	12	0.9	7	1.3	0.5
M5	2.7	M5x0.5	26	14.5	1.8	8	1.5	0.8
M6	2.5	M6x0.5	30	15	1.8	8	2	1
M8	3	M8x1	38	23.5	2	10	2.5	2
M10	3.5	M10x1	41	21	1.8	13	3	3
M12	4	M12x1	54	20	2	15	4	5
M14	5	M14x1	72	28	2	17	4	8
M16	5	M16x1	75	31.5	2	19	5	20

Ordering	g data		
Size	Part No.	Туре	
DYEF-M	– Long version		
M4	1179810	DYEF-M4-Y1	
M5	1179818	DYEF-M5-Y1	
M6	1179831	DYEF-M6-Y1	
M8	1179834	DYEF-M8-Y1	
M10	1179837	DYEF-M10-Y1	
M12	1179840	DYEF-M12-Y1	
M14	1179863	DYEF-M14-Y1	
M16	1179879	DYEF-M16-Y1	
DYEF-S-N	A – Short version		
M4	1152500	DYEF-S-M4-Y1	
M5	1152507	DYEF-S-M5-Y1	
M6	1152524	DYEF-S-M6-Y1	
M8	1152536	DYEF-S-M8-Y1	
M10	1152959	DYEF-S-M10-Y1	
M12	1153004	DYEF-S-M12-Y1	
M14	1153017	DYEF-S-M14-Y1	
M16	1153023	DYEF-S-M16-Y1	

Shock absorbers DYEF- ... -Y1F, with fixed stop Type codes

		DYEF]-[M8	-	Y1] [F
Туре								
DYEF	Shock absorber							
Size								
Design charac	teristic							
Design charac	t eristic				L			
Y1								

Shock absorbers DYEF- ... -Y1F, with fixed stop

FESTO

Technical data

- Ø - Size M4 ... M22 - J - Stroke length 1.7 ... 7 mm

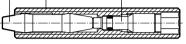
General technical data										
Size		M4	M5	M6	M8	M10	M12	M14	M16	M22
Stroke	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Mode of operation	Elastomer c	ushioning wi	th metal fixed	d stop						
Cushioning		Adjustable								
Cushioning length	[mm]	1.7	2.8	3.1	3.4	3.7	4.2	5	4.8	7
Type of mounting		Via lock nut								
Max. impact velocity	[m/s]	0.8								
Mounting position		Any								
Product weight	[g]	1.6	2.9	5.1	11.9	19.7	39.6	77.3	104	200
Ambient temperature	[°C]	0 +60	·							
Corrosion resistance class CRC ¹⁾		2					1			

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

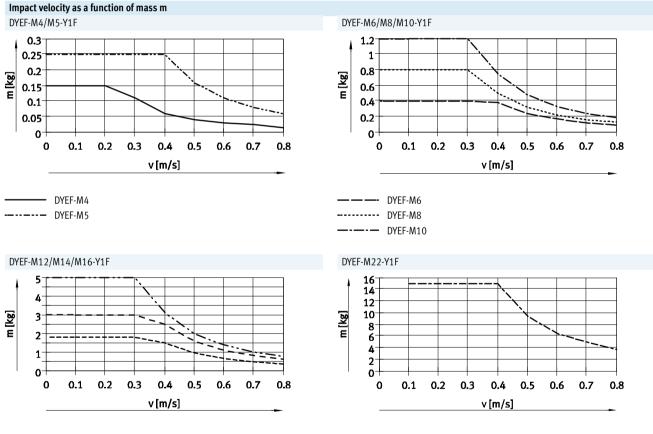
Force [N]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Min. insertion force ¹⁾	15	30	40	60	70	100	150	180	500

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly in the event of an extended external end position or a reduction in the cushioning stroke.


Energy [J]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Max. energy absorption per stroke	0.005	0.02	0.03	0.04	0.06	0.12	0.2	0.25	1.2
Mass range [kg]									
Size	M4	M5	M6	M8	M10	M12	M14	M16	M22
Mass range up to	0.15	0.25	0.4	0.6	1.2	1.8	3	5	15

Shock absorbers DYEF- ... -Y1F, with fixed stop

FESTO


Technical data

Materials Sectional view 1 2 3

Shock absorber

SHOCK	absorber	
1	Buffer	Nitrile rubber
2	Adjustable sleeve	High-alloy steel
3	Setting piece	High-alloy steel
-	Seals	Nitrile rubber
	Note on materials	Free of copper and PTFE
		RoHS-compliant

⁻⁻⁻⁻⁻ DYEF-M12 ---- DYEF-M14

———— DYEF-M22

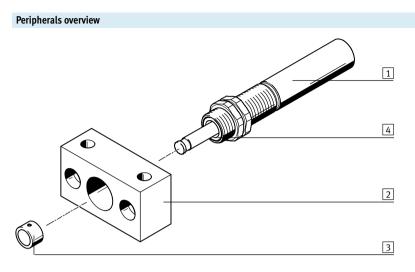
⁻⁻⁻⁻⁻ DYEF-M16

Shock absorbers DYEF- ... -Y1F, with fixed stop Technical data

FESTO

Dimensions	Download CAD data → www.festo.com

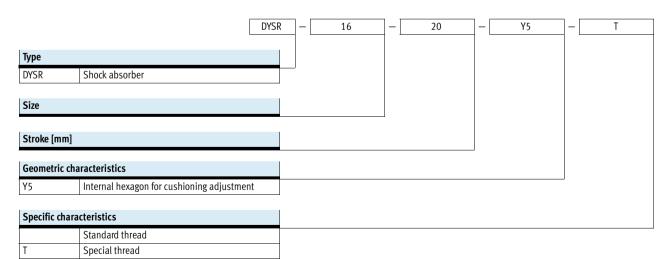
Size	B1	D1	L1	L2	=©1	=©2	=©3	Max. tightening torque =C1
				+0.3				[Nm]
M4	2.2	M4x0.5	22	1.7	7	1.3	2.5	0.5
M5	2.7	M5x0.5	26	2.8	8	1.5	3	0.8
M6	2.5	M6x0.5	30	3.1	8	2	4	1
M8	3	M8x1	38	3.4	10	2.5	5	2
M10	3.5	M10x1	41	3.7	13	3	6	3
M12	4	M12x1	54	4.2	15	4	8	5
M14	5	M14x1	72	5	17	4	8	8
M16	5	M16x1	75	4.8	19	5	10	20
M22	5	M22x1.5	78	7	27	5	10	35


Ordering	data		
Size	Part No.	Туре	
M4	548370	DYEF-M4-Y1F ¹⁾	
M5	548371	DYEF-M5-Y1F	
M6	548372	DYEF-M6-Y1F	
M8	548373	DYEF-M8-Y1F	
M10	548374	DYEF-M10-Y1F	
M12	548375	DYEF-M12-Y1F	
M14	548376	DYEF-M14-Y1F	
M16	548377	DYEF-M16-Y1F	
M22	1113706	DYEF-M22-Y1F	

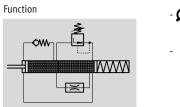
1) The scope of delivery for this size includes an Allen key.

Shock absorbers DYSR

Peripherals overview and type codes


FESTO

Access	sories		
	Туре	Description	→ Page/Internet
1	Shock absorber DYSR	Hydraulic shock absorber with adjustable cushioning characteristics	15
2	Mounting flange YSRF	Mounting option for shock absorber	46
3	Buffer YSRP	For protecting the piston rod	48
4	Wiper seal ¹⁾ ; hardened piston rod ²⁾	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-


As of size 12
 As of size 16

Type codes

Shock absorbers DYSR

Technical data

O-Size 8 ... 32 Stroke length 8 ... 60 mm

General technical data

General technical data							
Size		8	12	16	20	25	32
Stroke	[mm]	8	12	20	25	40	60
Mode of operation		Hydraulic shock	absorber with sprin	g return			
		Single acting, p	ushing				
Cushioning		Adjustable, for	e-dependent, hard cl	haracteristic curve			
Cushioning length	[mm]	8	12	20	25	40	60
Type of mounting		Via lock nut	· ·				
Impact velocity	[m/s]	0.1 3					
Mounting position		Any					
Product weight	[g]	60	105/120 ¹⁾	200/2501)	355/425 ¹⁾	715	1355
Ambient temperature	[°C]	-10 +80	L				
Corrosion resistance class C	RC ²⁾	1					

Applies to shock absorbers with special thread T
 Corrosion resistance class CRC 1 to Festo standard FN 940070

Low correction stress. For dry indoor applications or transport and storage protection. Also applies to parts behind covers, in the non-visible interior area, and parts which are covered in the application (e.g. drive trunnions).

Reset time [s]						
Size	8	12	16	20	25	32
Reset time ¹⁾	≤ 0.2		≤ 0.3		≤ 0.4	≤ 0.6

1) The specified technical data refers to ambient temperature. At -10 °C, the reset time can be up to 1 s for sizes 12, 16 and up to 3 s for sizes 8, 20, 25, 32

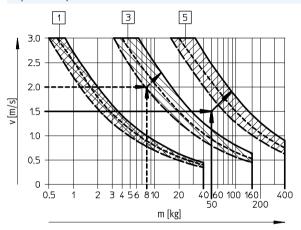
Force [N]						
Size	8	12	16	20	25	32
Min. insertion force ¹⁾	18	38	66	110	155	175
Max. stop force ²⁾ in the end positions	400	900	1600	2500	4000	6400
Min. resetting force ³⁾	1.8	4.5	5.4	9	12.5	18

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly with an extended external end position

2) If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke

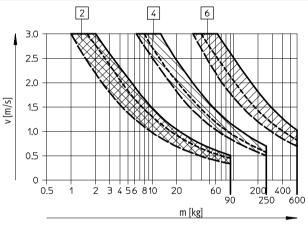
3) This is the maximum force that can act on the piston rod, allowing for full extension of the shock absorber (e.g. protruding bolt)


Energy [J]						
Size	8	12	16	20	25	32
Max. energy absorption per stroke	4	10.8	32	62.5	160	384
Max. energy absorption per hour	24000	60000	100000	135000	220000	330000
Max. residual energy	0.01	0.05	0.16	0.32	0.8	2


Shock absorbers DYSR

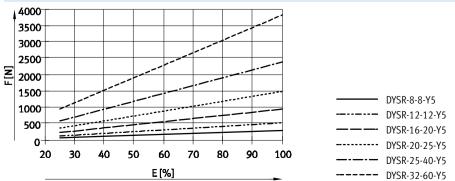
Technical data

Mater Section	rials onal view						
Size		8	12	16	20	25	32
Size	Piston rod	8 High-alloy steel	12	16 High-alloy steel, h		25	32
		-	12 Galvanised steel			25	32
1	Piston rod	High-alloy steel				25	32
1	Piston rod Housing	High-alloy steel High-alloy steel	Galvanised steel			25	32


Selection graph for shock absorbers with infinitely adjustable cushioning DYSR

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

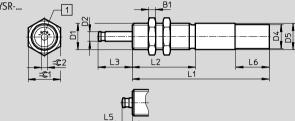
The arrows relate to the examples starting on page 52.



1	DYSR-8-8
2	DYSR-12-12
3	DYSR-16-20

4 DYSR-20-25 5 DYSR-25-40 6 DYSR-32-60

Shock absorber	Force A =	Force A =	Force A =
DYSR-8-8	0 N	100 N	200 N
DYSR-12-12	0 N	200 N	500 N
DYSR-16-20	0 N	500 N	800 N
DYSR-20-25	0 N	800 N	1200 N
DYSR-25-40	0 N	1200 N	2000 N
DYSR-32-60	0 N	2000 N	3000 N



Shock absorbers DYSR

Technical data

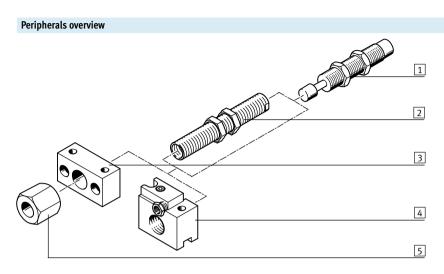
DYSR-8-8 DYSR-8 DYSR

1 Cushioning adjustment Buffer (included in the scope of delivery)

- Download CAD data → www.festo.com + = Cushioning becomes harder
 - = Cushioning becomes softer

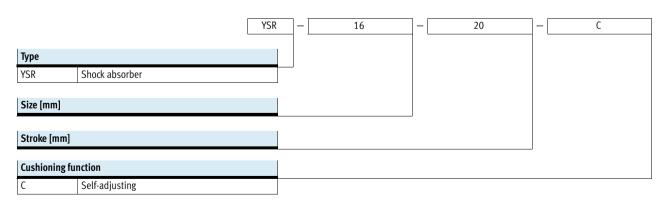
1 Cushioning adjustment Buffer YSRP (not included in the scope of delivery)

- + = Cushioning becomes harder
- = Cushioning becomes softer


Туре	B1	D1	D2	D3	D4	D5	L1	L2
			Ø	Ø	Ø	Ø		
				±0.2	+0.15	+0.15/-0.1		±0.1
DYSR-8-8-Y5	4	M12x1	4	8	-	12	77±0.1	30
DYSR-12-12-Y5	E	M15x1	6	_		15	97±0.1	36
DYSR-12-12-Y5-T	5	M16x1	0	-	_	16	97±0.1	00
DYSR-16-20-Y5	- 6	M20x1.25	8	-	-	20	115±0.1	53
DYSR-16-20-Y5-T	0	M22x1.5	0		20	22	115±0.1	
DYSR-20-25-Y5	8	M24x1.25	10	-	-	24	138±0.1	60
DYSR-20-25-Y5-T	0	M26x1.5	10		24	26	1 30±0.1	60
DYSR-25-40-Y5	10	M30x1.5	12	-	28.8	30	178±0.1	80
DYSR-32-60-Y5	12	M37x1.5	15	-	34.8	37	230±0.15	108

Туре	L3	L4	L5	L6	=©1	=©2	Max. tightening torque ∹©1	
		±0.2		±0.2			[Nm]	
DYSR-8-8-Y5	16.2+0.6/-0.45	8	8+0.5/-0.35	_	15	4	5	
DYSR-12-12-Y5	10 / 0 05 / 0 0		6.4+0.45/-0.4	-	19	F	20	
DYSR-12-12-Y5-T	- 18.4+0.35/-0.2	_	0.4+0.45/-0.4		19	5	20	
DYSR-16-20-Y5	20 5 6 // 6 6		0.5	-	24	F	25	
DYSR-16-20-Y5-T	28.5+0.4/-0.3	_	8.5+0.45/-0.4	28	27	5	35	
DYSR-20-25-Y5	25 (10 (-	30	F	(0	
DYSR-20-25-Y5-T	35.6+0.4/-0.3	_	10.6+0.45/-0.4	28	32		60	
DYSR-25-40-Y5	52.8+0.4/-0.3	-	12.8+0.45/-0.4	28	36	6	80	
DYSR-32-60-Y5	76+0.5/-0.4	-	16+0.5/-0.4	28	46	6	100	

Ordering	data	
Size	Part No.	Туре
8	1138641	DYSR-8-8-Y5
12	1138642	DYSR-12-12-Y5
	1138643	DYSR-12-12-Y5-T
16	1138644	DYSR-16-20-Y5
	1138645	DYSR-16-20-Y5-T
20	1138646	DYSR-20-25-Y5
	1138647	DYSR-20-25-Y5-T
25	1138648	DYSR-25-40-Y5
32	1138649	DYSR-32-60-Y5


Shock absorbers YSR-C

Peripherals overview and type codes

Acces	Accessories								
	Туре	Description	→ Page/Internet						
1	Shock absorber YSR-C	Hydraulic shock absorber with rapidly increasing cushioning force curve	19						
2	Reducing sleeve DAYH	To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve	49						
3	Mounting flange YSRF	Mounting option for shock absorber	46						
4	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	47						
5	Stop limiters YSRA	Stroke limiter for shock absorber	48						
-	Inductive proximity sensor SIEN	For mounting flange YSRF-S	49						

Type codes

Shock absorbers YSR-C

Technical data

Function

 ✓ - Size 4 ... 32 mm
 ✓ - Stroke length 4 ... 60 mm

General technical data

General technical data											
Size		4	5	7	8	10	12	16	20	25	32
Stroke	[mm]	4	5	5	8	10	12	20	25	40	60
Mode of operation	Hydrauli	c shock absor	rbers with r	eturn spring	8						
		Single a	cting, pushing	5							
Cushioning		Self-adjı	ustable								
Cushioning length	[mm]	4	5	5	8	10	12	20	25	40	60
Type of mounting		With loc	knut				·				
Impact velocity	[m/s]	0.05 2	2	0.05 3	3						
Mounting position		Any									
Product weight	[g]	5	8	16	32	51	74	185	318	600	1220
Ambient temperature	[°C]	-10 +	80				·				
Corrosion resistance class	CRC ¹⁾	2									

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Reset time [s]										
Size	4	5	7	8	10	12	16	20	25	32
Reset time ¹⁾	≤ 0.2						≤ 0.3		≤ 0.4	≤ 0.5

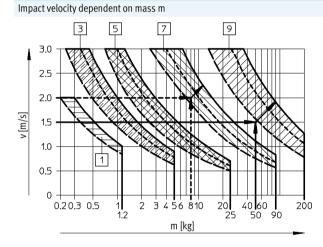
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]										
Size	4	5	7	8	10	12	16	20	25	32
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35	60	100	140	160
Max. stop force ²⁾ in end positions	100	200	300	500	700	1000	2000	3000	4000	6000
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5	6	10	14	20

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position

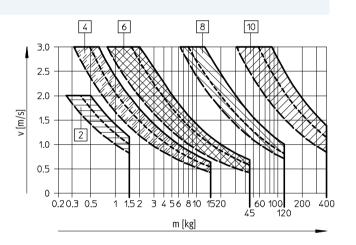
2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)


Energies [J]										
Size	4	5	7	8	10	12	16	20	25	32
Max. energy absorption per stroke	0.6	1	2	3	6	10	30	60	160	380
Max. energy absorption per hour	5600	8000	12000	18000	26000	36000	64000	92000	150000	220000
Max. residual energy	0.006	0.01		0.02	0.03	0.05	0.16	0.32	0.8	2
Mass range [kg]										
Size	4	5	7	8	10	12	16	20	25	32
Permissible mass range up to	1.2	1.5	5	15	25	45	90	120	200	400

Shock absorbers YSR-C

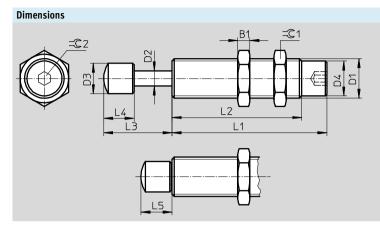
Technical data


Materials Sectional view 1 3 2 Piston Ø 10 12 16 20 25 32 4 5 7 8 1 Housing High-alloy steel Galvanised steel 2 Piston rod High-alloy steel 3 Steel with Buffer Polyamide polyurethane Seals Nitrile rubber, polyurethane _ Note on materials Free of copper and PTFE

Selection graph for self-adjusting shock absorbers YSR-C

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. The arrows relate to the examples starting \rightarrow page 53.

Conforms to RoHS



1	YSR-4-4-C	6 YSR-12-12-C
2	YSR-5-5-C	7 YSR-16-20-C
3	YSR-7-5-C	8 YSR-20-25-C
4	YSR-8-8-C	9 YSR-25-40-C
5	YSR-10-10-C	10 YSR-32-60-C

Shock absorber	Force A =	Force A =	Force A =
YSR-4-4-C	0 N	-	50 N
YSR-5-5-C	0 N	50 N	100 N
YSR-7-5-C	0 N	100 N	200 N
YSR-8-8-C	0 N	100 N	200 N
YSR-10-10-C	0 N	150 N	300 N
YSR-12-12-C	0 N	200 N	500 N
YSR-16-20-C	0 N	500 N	800 N
YSR-20-25-C	0 N	800 N	1200 N
YSR-25-40-C	0 N	1200 N	2500 N
YSR-32-60-C	0 N	2000 N	4000 N

Shock absorbers YSR-C

Technical data

Download CAD data → www.festo.com

FESTO

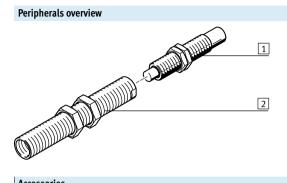
- 🏺 - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

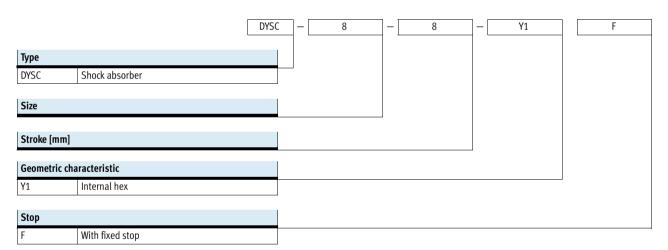
Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1
[mm]				~	.~	±0.1
4	2.5	M6x0.5	2	3.5 ±0.05	5.3 ±0.05	28.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	29
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	34
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	46
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	55
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	64
16	6	M22x1.5	8	16 ±0.2	19.6 ±0.1	86
20	8	M26x1.5	10	20 ±0.2	23.8 ±0.1	104
25	10	M30x1.5	12	25 ±0.2	27.8 ±0.1	152
32	12	M37x1.5	15	32 ±0.2	34.8 ±0.1	205

Size	L2	L3	L4	L5	=©1	=©2	Max. tightening torque ≍© 1 [Nm]
[mm]	±0.3						
4	18.5	8.3 +0.6/-0.3	4 ±0.1	4.3 +0.35/-0.25	8	2	1
5	19	10.8 +0.6/-0.3	5.5 ±0.1	5.8 +0.55/-0.25	10		2
7	23	12.3 +0.7/-0.35	7 ±0.2	7.3 +0.55/-0.25	13		3
8	33	16.3 +0.7/-0.35	8 ±0.2	8.3 +0.55/-0.25	15		5
10	42	20.5 +0.7/-0.35	10 ±0.2	10.5 +0.55/-0.25	17		8
12	51	24.5 +0.7/-0.35	12 ±0.2	12.5 +0.55/-0.25	19	_	20
16	69	36.5 +0.7/-0.35	16 ±0.2	16.5 +0.55/-0.25	27		35
20	87	45.5 +0.7/-0.35	20 ±0.2	20.5 +0.55/-0.25	32		60
25	125	61.5 +1.25/-0.75	20.5 ±0.4	21.5 +0.95/-0.55	36		80
32	179	87 +1.25/-0.75	26 ±0.4	27 +0.95/-0.55	46		100

1		
Ordering	data	
Size	Part No.	Туре
[mm]		
	E / 00 / 0	VCD ((C1)
4	540060	YSR-4-4-C ¹⁾
5	158981	YSR-5-5-C ¹⁾
7	160272	YSR-7-5-C ¹⁾
8	34571	YSR-8-8-C ¹⁾
10	191199	YSR-10-10-C ¹⁾
12	34572	YSR-12-12-C ¹⁾
16	34573	YSR-16-20-C ¹⁾
20	34574	YSR-20-25-C ¹⁾
25	160273	YSR-25-40-C
32	160274	YSR-32-60-C


1) Free of copper, PTFE and silicone

Shock absorbers DYSC


Peripherals overview and type codes

FESTO

Access	ccessories								
	Туре	Description	→ Page/Internet						
1	Shock absorber	Hydraulic shock absorber with rapidly increasing cushioning force curve	23						
	DYSC								
2	Reducing sleeve	To improve the cushioning performance in the case of underload, the built-in shock	49						
	DAYH	absorber can be replaced by the next smallest shock absorber with the help of the							
		reducing sleeve							

Type codes

Shock absorbers DYSC

Technical data

Function

 Size
 4 ... 25

 Stroke length

 4 ... 25 mm

General technical data

	4	5	7	8	12	16	20	25
[mm]	4	5	5	8	12	18	18	25
	Hydraulic	shock absorbe	r with spring ret	urn				· ·
	Single act	ing, pushing						
Cushioning Self-adjusting, hard characteristic curve								
[mm]	4	5	5	8	12	18	16	25
	With lock	nut						
[m/s]	0.05 2		0.05 3					
	Any							
[g]	5	9	17	36	81	210	370	575
Ambient temperature [°C] -10 +80								· ·
Corrosion resistance class CRC ¹⁾								
	[mm] [m/s] [g] [°C]	[mm] 4 Hydraulic Single act Self-adjus [mm] 4 With lock [m/s] 0.05 2 Any [g] 5 [°C] -10 +8	[mm] 4 5 Hydraulic shock absorbe Single acting, pushing Self-adjusting, hard char [mm] 4 5 With lock nut 5 With lock nut [m/s] 0.05 2 Any [g] 5 9 [°C] -10 +80 Self-adjusting, hard char	4 5 7 [mm] 4 5 5 Hydraulic shock absorber with spring ref Single acting, pushing 5 Self-adjusting, hard characteristic curve Self-adjusting, hard characteristic curve [mm] 4 5 5 With lock nut 5 5 [m/s] 0.05 2 0.05 3 Any 5 9 17 [°C] -10 +80 5 5	[mm] 4 5 5 8 Hydraulic shock absorber with spring return Single acting, pushing Self-adjusting, hard characteristic curve [mm] 4 5 5 8 [mm] 4 5 5 8 With lock nut 0.05 3 8 [m/s] 0.05 2 0.05 3 17 36 [°C] -10 +80	[mm] 4 5 5 8 12 Hydraulic shock absorber with spring return Single acting, pushing Self-adjusting, hard characteristic curve [mm] 4 5 5 8 12 [m/s] 0.05 2 0.05 3 12 [g] 5 9 17 36 81 [°C] -10 +80 -17 36 81	[mm] 4 5 5 8 12 18 Hydraulic shock absorber with spring return Single acting, pushing Self-adjusting, hard characteristic curve [mm] 4 5 5 8 12 18 With lock nut 5 5 8 12 18 [m/s] 0.05 2 0.05 3 12 18 [g] 5 9 17 36 81 210 [°C] -10 +80	[mm] 4 5 5 8 12 18 18 Hydraulic shock absorber with spring return Single acting, pushing Self-adjusting, hard characteristic curve [mm] 4 5 5 8 12 18 16 With lock nut Understand [m/s] 0.05 2 0.05 3 12 18 16 [m/s] 5.5 9 17 36 81 210 370 [°C] -10 +80

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Reset time [s]								
Size	4	5	7	8	12	16	20	25
Reset time ¹⁾	≤ 0.2					≤ 0.3		

1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]									
Size	4	5	7	8	12	16	20	25	
Min. insertion force ¹⁾	6.5	7.5	10	18	35	60	100	140	
Max. stop force ²⁾ in end positions	100	200	300	500	1000	2000	3000	4000	
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	5	6	10	14	

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position

2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

Energies [J]								
Size	4	5	7	8	12	16	20	25
Max. energy absorption per stroke	0.6	1	2	3	10	25	38	100
Max. energy absorption per hour	5600	8000	12000	18000	36000	50000	80000	140000
Max. residual energy	0.006	0.01		0.02	0.05	0.16	0.32	0.8
Mass range [kg]								
Size	4	5	7	8	12	16	20	25
Mass range up to	1.2	1.5	5	15	45	70	100	160

Shock absorbers DYSC

Technical data

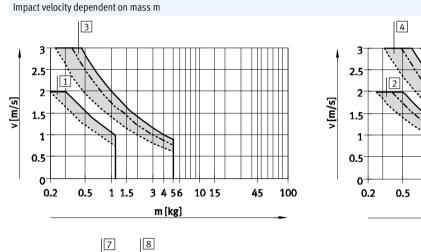
Materials Sectional view

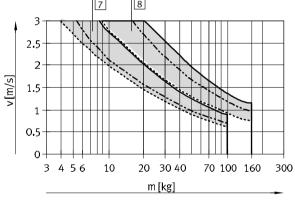
Size		4	5	7	8	12	16	20	25	
1	Buffer	POM								
2	Piston rod	High-all	High-alloy steel							
3	Housing	High-all	oy steel			Galvanised steel				
-	Seals	NBR								
	Note on materials	Free of copper and PTFE								
		Conforms to RoHS								

5

1 1.5

6


10 15


45 70 100

3 4 56

m [kg]

Selection graph for self-adjusting shock absorbers DYSC

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging.

 1
 DYSC-4-4-Y1F

 2
 DYSC-5-5-Y1F

 3
 DYSC-7-5-Y1F

4	DYSC-8-8-Y1F
5	DYSC-12-12-Y1F
6	DYSC-16-18-Y1F

7 DYSC-20-18-Y1F 8 DYSC-25-25-Y1F

Shock absorber	Force A =	Force A =	Force A =
DYSC-4-4-Y1F	0 N	-	50 N
DYSC-5-5-Y1F	0 N	50 N	100 N
DYSC-7-5-Y1F	0 N	100 N	200 N
DYSC-8-8-Y1F	0 N	100 N	200 N
DYSC-12-12-Y1F	0 N	200 N	500 N
DYSC-16-18-Y1F	0 N	500 N	800 N
DYSC-20-18-Y1F	0 N	800 N	1200 N
DYSC-25-25-Y1F	0 N	1200 N	2500 N

Shock absorbers DYSC

Technical data

Dimensions

Shock absorber in end position

L3

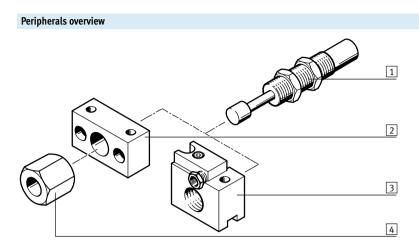
Download CAD data → www.festo.com

FESTO

- Friend - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1	L2
[mm]						±0.1	+0.3/-0.2
4	2.5	M6x0.5	2	3.5 ±0.05	5.4 ±0.05	35.5	25.5
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	38.6	28.6
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	45.15	34.15
8	4	M12x1	4	7 ±0.1	10.4 ±0.1	59.05	46.05
12	5	M16x1	6	11 ±0.1	14.5 ±0.1	82.5	69.5
16	6	M22x1.5	8	15 ±0.1	19,6 ±0.1	110	93
20	8	M26x1.5	10	18.8 ±0.1	23.8 ±0.1	122	105
25	10	M30x1.5	12	22.8 ±0.1	27.8 ±0.1	165	137

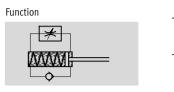

Size	L3 ¹⁾	L4	=©1	=©2	Max. tightening torque =C1
[mm]					[Nm]
4	4	4 +0.30/-0.24	8	2	1
5	5.5	5 +0.32/-0.28	10	2.5	2
7	7	5 +0.37/-0.28	13	3	3
8	8	8 +0.42/-0.33	15	4	5
12	12	12 +0.50/-0.35	19	5	20
16	17	18 +0.50/-0.35	27	5	35
20	20	18 +0.50/-0.35	32	6	60
25	22	25 +0.50/-0.35	36	8	80

1) Buffer length

Ordering dat	a	
Size	Part No.	Туре
[mm]		
4	570506	DYSC-4-4-Y1F
5	548011	DYSC-5-5-Y1F
7	548012	DYSC-7-5-Y1F
8	548013	DYSC-8-8-Y1F
12	548014	DYSC-12-12-Y1F
16	553593	DYSC-16-18-Y1F
20	2479149	DYSC-20-18-Y1F
25	2480234	DYSC-25-25-Y1F

Shock absorbers YSRW

Peripherals overview and type codes


Acces	sories		
	Туре	Description	→ Page/Internet
1	Shock absorber YSRW	Hydraulic shock absorber with progressive cushioning characteristic	27
2	Mounting flange YSRF	Mounting option for shock absorber	46
3	Mounting flange YSRF-S	Mounting option for shock absorber with attached stop sleeve and position sensing	47
4	Stop limiters YSRA	Stroke limiter for shock absorber	48
-	Inductive proximity sensor SIEN	For mounting flange YSRF-S	49

Type codes

		YSRW]-[10	_	20
Туре						
YSRW	Shock absorber		_			
Size						
Stroke [mm]						

Shock absorbers YSRW

Technical data

General technical dat

General technical data								
Size		5	7	8	10	12	16	20
Stroke	[mm]	8	10	14	17	20	26	34
Mode of operation		Hydraulic sh	ock absorbers v	vith return spring				
		Single acting	g, pushing					
Cushioning		Self-adjusta	ble					
Cushioning length	[mm]	8	10	14	17	20	26	34
Type of mounting		With locknut	:					
Impact velocity	[m/s]	0.1 2	0.1 3					
Mounting position		Any						
Product weight	[g]	8	18	34	54	78	190	330
Ambient temperature	[°C]	-10 +80						
Corrosion resistance class	CRC ¹⁾	2						

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Reset time [s]							
Size	5	7	8	10	12	16	20
Reset time ¹⁾	≤ 0.2				≤ 0.3		

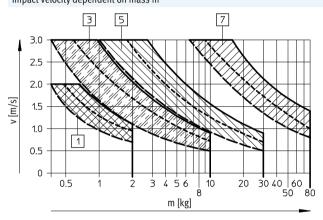
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

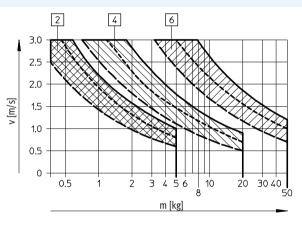
Forces [N]							
Size	5	7	8	10	12	16	20
Min. insertion force ¹⁾	7.5	10	18	25	35	60	100
Max. stop force ²⁾ in end positions	200	300	500	700	1000	2000	3000
Min. resetting force ³⁾	0.9	1.2	2.5	3.5	5	6	10

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end-position

2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)


Energies [J]							
Size	5	7	8	10	12	16	20
Max. energy absorption per stroke	1.3	2.5	4	8	12	35	70
Max. energy absorption per hour	10000	15000	21000	30000	41000	68000	100000
Max. residual energy	0.01		0.02	0.03	0.05	0.16	0.32
Mass range [kg]							
Size	5	7	8	10	12	16	20
Permissible mass range up to	2	5	10	20	30	50	80


Shock absorbers YSRW

Technical data

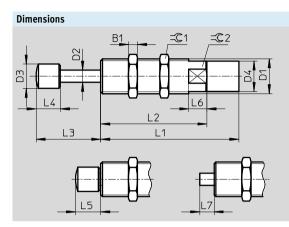
Materials Sectional view 1 2 3 **8999999** 10 16 20 Size 5 7 8 12 Buffer 1 Polyamide Piston rod High-alloy steel 2 Housing Galvanised steel High-alloy steel 3 Nitrile rubber Seals Free of copper and PTFE Note on materials Conforms to RoHS

Selection graph for self-adjusting shock absorbers with progressive characteristics YSRW Impact velocity dependent on mass m

Three force curves are shown for each shock absorber. Interim values must be calculated by averaging. 1 YSRW-5-8 2 YSRW-7-10 3 YSRW-8-14

4 YSRW-10-17

5 YSRW-12-20


6 YSRW-16-26 7 YSRW-20-34

[/] YSRW-20-34

Shock absorber	Force A =	Force A =	Force A =	
YSRW-5-8	0 N	50 N	100 N	
YSRW-7-10	0 N	75 N	150 N	
YSRW-8-14	0 N	100 N	200 N	
YSRW-10-17	0 N	150 N	300 N	
YSRW-12-20	0 N	200 N	400 N	
YSRW-16-26	0 N	500 N	800 N	
YSRW-20-34	0 N	800 N	1200 N	

Shock absorbers YSRW

Technical data

FESTO

Download CAD data 🗲 www.festo.com

=

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

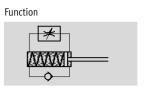
Size	B1	D1	D2	D3	D4	L1	L2	L3
			Ø	Ø	Ø			
[mm]						±0.1	±0.3	
5	3	M8x1	2.5	4.7 ±0.05	6.7 ±0.05	33.5	22.5	13.8 +0.6/-0.25
7	3.5	M10x1	3	6 ±0.1	8.6 ±0.05	41	30	17.3 +0.7/-0.25
8	4	M12x1	4	8 ±0.2	10.4 ±0.1	53	40	22.3 +0.7/-0.25
10	5	M14x1	5	10 ±0.2	12.4 ±0.1	62	49	27.5 +0.7/-0.25
12	5	M16x1	6	12 ±0.2	14.5 ±0.1	72.5	59.5	32.5 +0.7/-0.25
16	6	M22x1.5	8	16 ±0.2	20 ±0.1	91	70	42.5 +0.7/-0.35
20	8	M26x1.5	10	18.8 ±0.2	24 ±0.1	112	91	54.5 +0.7/-0.35

Size	L4	L5	L6	L7	=©1	=℃2	Max. tightening torque ∹©1
[mm]			+0.5				[Nm]
5	5.5 ±0.1	5.8 +0.35/-0.25	5	3.5 ±0.25	10	7	2
7	7 ±0.2	7.3 +0.35/-0.25	6	4.3 ±0.25	13	9	3
8	8 ±0.2	8.3 +0.4/-0.25	8	5.3 +0.3/-0.25	15	11	5
10	10 ±0.2	10.5 +0.4/-0.25	10	6.5 +0.3/-0.25	17	13	8
12	12 ±0.2	12.5 +0.4/-0.25	12	7.5 +0.3/-0.25	19	15	20
16	16 ±0.2	16.5 +0.4/-0.25	12	9.5 +0.3/-0.25	27	20	35
20	20 ±0.2	20.5 +0.4/-0.25	12	11.5 +0.3/-0.25	32	24	60

Ordering d	lata	
Size	Part No.	Туре
[mm]		
5	191192	YSRW-5-8
7	191193	YSRW-7-10
8	191194	YSRW-8-14
10	191195	YSRW-10-17
12	191196	YSRW-12-20
16	191197	YSRW-16-26
20	191198	YSRW-20-34

FESTO

Shock absorbers DYSS


Type code

	DY	SS	-	8	-	8	—	Y1	F
Туре									
DYSS	Shock absorbers								
Size									
					1				
Stroke [mm]									
Design charac	teristic								
Y1	Internal hex socket								
Stop									
F	With fixed stop								

·O· New

Shock absorbers DYSS

Technical data

General technical data

	2	3	4	5	7	8	10	12				
[mm]	4	4	4	5	5	8	10	12				
	Hydraulic shock absorber with spring return											
			Single-acting, pushing									
Cushioning												
[mm]	4	4	4	5	5	8	10	12				
	Via lock nut			÷								
[m/s]	0.1 0.5	0.1 1			0.1 1.5							
	Any											
[g]	1	3	4.5	7	15	30	51	82				
[°C]	-10 +70	-10 +80		÷	÷			-5 +80				
	2											
	[mm] [m/s]	[mm] 4 Hydraulic sh Single-acting Self-adjustin [mm] [mm] 4 Via lock nut [m/s] [m/s] 0.1 0.5 Any [g]	[mm] 4 4 Hydraulic shock absorber Single-acting, pushing Self-adjusting, soft charact Self-adjusting, soft charact [mm] 4 4 Via lock nut Via lock nut [m/s] 0.1 0.5 0.1 1 Any [g] 1 3	[mm] 4 4 4 Hydraulic shock absorber with spring Single-acting, pushing Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 Via lock nut 4 4 [m/s] 0.1 0.5 0.1 1 Any [g] 1 3 4.5	[mm] 4 4 4 5 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 [mm] 4 4 5 Via lock nut Via lock nut 5 [m/s] 0.1 0.5 0.1 1 Any 3 4.5 7	[mm] 4 4 4 5 5 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 5 Via lock nut Via lock nut 0.1 1 0.1 1. [m/s] 0.1 0.5 0.1 1 0.1 1. [g] 1 3 4.5 7 15	[mm] 4 4 5 5 8 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 5 8 Via lock nut 4 4 5 5 8 [m/s] 0.1 0.5 0.1 1 0.1 1.5 0.1 1.5 [m/s] 0.1 0.5 0.4.5 7 15 30	[mm] 4 4 5 5 8 10 Hydraulic shock absorber with spring return Single-acting, pushing Self-adjusting, soft characteristic curve [mm] 4 4 5 5 8 10 [mm] 4 4 5 5 8 10 Via lock nut Via lock nut 0.1 1.5 0.1 1.5 0.1 1.5 10 [m/s] 0.1 0.5 0.1 1 7 15 30 51				

1) Weight without nut.

Corrosion resistance class CRC 2 to Festo standard FN 940070 2)

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Reset time [s]								
Size	2	3	4	5	7	8	10	12
Reset time ¹⁾	≤ 0.5	≤ 0.2						

1) The specified technical data refers to ambient temperature. At higher temperatures in the region of 80 °C, the maximum mass and the cushioning energy must be reduced by approximately 50%. At -10 °C, the reset time may be up to 1 second.

Increased reset times must be expected with longer dwell time in the end position.

Forces [N]								
Size	2	3	4	5	7	8	10	12
Min. insertion force ¹⁾	2.5	3.5	4.5	10	10	18	24	35
Max. stop force ²⁾ in end positions (housing)	60	80	100	200	300	500	700	1000
Min. resetting force ³⁾	0.8	0.5	0.8	0.9	1.2	2.5	4	4

1) This is the minimum force that must be applied so that the shock absorber is pushed precisely into the retracted end position. This value is reduced correspondingly with an extended external end position.

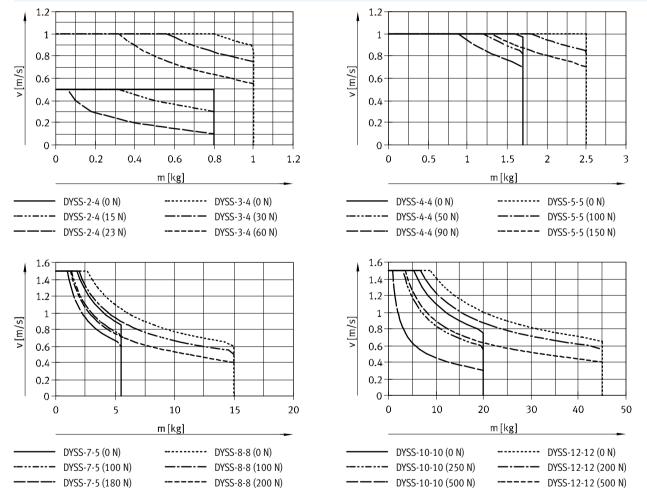
If the maximum stop force is exceeded, a fixed stop (e.g. YSRA) must be fitted 0.5 mm before the end of stroke.
 This is the maximum force that can act on the piston rod, allowing for full extension of the shock absorber (e.g. protruding bolt).

Energies									
Size		2	3	4	5	7	8	10	12
Max. energy absorption per stroke at +20 °C	[J]	0.1	0.4	0.8	1.4	2	3	6	10
Max. energy absorption per hour at +20 °C	[kJ]	0.27	4.5	5.5	8	12	18	25	36
Max. operating frequency ¹⁾	[Cycles/ min]	50	80	80	80	70	50	50	50
Max. residual energy		0.003	0.004	0.006	0.01	0.01	0.02	0.03	0.05

1) For energy utilisation of 70% or above per stroke.

Shock absorbers DYSS

Technical data

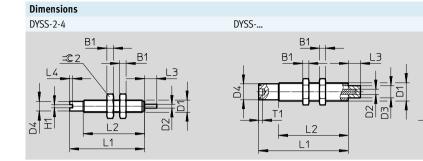

Mass range [kg]								
Size	2	3	4	5	7	8	10	12
Mass range up to	0.8	1	1.7	2.5	5.5	15	20	45

Materials

Shock absorbers		
Buffer	РОМ	
Piston rod	High-alloy steel	
Housing	High-alloy steel	
Seals	NBR	
Note on materials	RoHS-compliant	

Selection graph for self-adjusting shock absorbers with progressive characteristics DYSS

Impact velocity v as a function of mass m



·O· New

Shock absorbers DYSS

Technical data

FESTO

Download CAD data → www.festo.com

- Note

=C1

To increase the service life: Prevent dirt or liquids getting into the inner chamber of the piston via the piston rod (e.g. by using a cover).

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	H1	L1	L2
			Ø	Ø	D D		±0.2	±0.3
2	2.2	M4x0.5	1.2	-	3.2+0.1/-0.05	1	24.6	20.1
3	2.7	M5x0.5	1.5	3±0.1	4.3+0.1/-0.05	-	33.5	27.5
4	2.5	M6x0.5	1.8	4±0.1	5.3+0.1/-0.05	-	35.5	29.5
5	3	M8x1	2.5	5±0.1	6.7+0.1/-0.05	-	38.6	32.6
7	3.5	M10x1	3	6±0.1	8.6+0.1/-0.05	-	45.2	35.2
8	4	M12x1	3.5	8±0.2	10.4+0.15/-0.1	-	59	49
10	5	M14x1	4	10±0.2	12.5+0.15/-0.1	-	70	57
12	5	M16x1	5	12±0.2	14.5+0.15/-0.1	-	82.5	69.5

Size	L3	L4	T1	=©1	Max. tightening torque ∹©1 [Nm]	=©2	Max. tightening torque ≍©2 for nut [Nm]
2	4+0.5	1	-	-	0.1	7	0.5
3	4+0.6	-	1.5	2	0.5	8	1
4	4+0.6	-	1.5	2	0.6	8	1
5	5+0.6	-	2	2.5	1	10	2
7	5+0.6	-	2.2	3	3	13	3
8	8+0.6	-	2.5	4	5	15	5
10	10+0.8	-	3.5	5	10	17	8
12	12+0.8	-	3.5	5	16	19	20

- 🗍 - Note

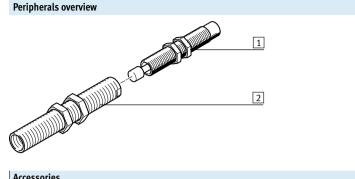
• The piston rod must not be pushed beyond the stop surface

• The piston rod must not be pulled

• The screws in the internal hexagon socket must not be removed

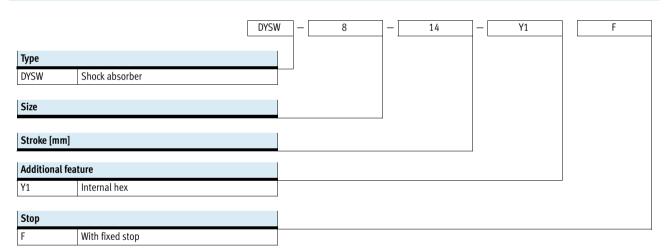
Ordering data

ordening	uala		
Size	Part No.	Туре	
2	8081767	DYSS-2-4-Y1F	
3	8081768	DYSS-3-4-Y1F	
4	8081769	DYSS-4-4-Y1F	
5	8081770	DYSS-5-5-Y1F	
7	8069001	DYSS-7-5-Y1F	
8	8069002	DYSS-8-8-Y1F	
10	8069003	DYSS-10-10-Y1F	
12	8069004	DYSS-12-12-Y1F	

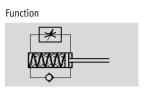


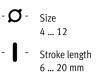
Shock absorbers DYSW

Peripherals overview and type codes


Peripherals overview

FESTO


Access	Accessories									
	Туре	Description	→ Page/Internet							
1	Shock absorber	Hydraulic shock absorber with rapidly increasing cushioning force curve	35							
	DYSW									
2	Reducing sleeve	To improve the cushioning performance in the case of underload, the built-in shock	49							
	DAYH	absorber can be replaced by the next smallest shock absorber with the help of the								
		reducing sleeve								


Type codes

Shock absorbers DYSW

Technical data

General technical data		1	1	1	1.	1 .	
Size		4	5	7	8	10	12
Stroke	[mm]	6	8	10	14	17	20
Mode of operation		Hydraulic shock ab	sorber with spring re	eturn			
		Single acting, pushing					
Cushioning		Self-adjusting, soft	Self-adjusting, soft characteristic curve				
Cushioning length	[mm]	6	8	10	14	17	20
Type of mounting		With lock nut					1
Impact velocity	[m/s]	0.1 2	0.1 2 0.1 3				
Assembly position		Any	Any				
Product weight	[g]	6	11	21	42	67	91
Ambient temperature	[°C]	-10 +80				- L	

Reset time [S]						
Size	4	5	7	8	10	12
Reset time ¹⁾	≤ 0.2					≤ 0.3

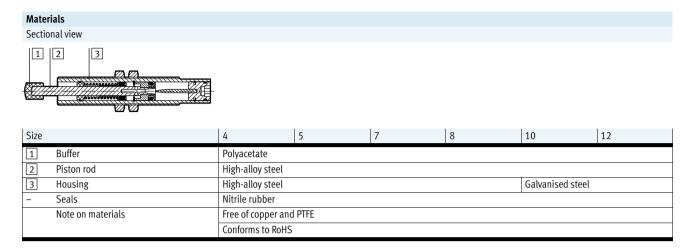
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At -10 °C, the reset time may be up to 1 second

Forces [N]						
Size	4	5	7	8	10	12
Min. insertion force ¹⁾	6.5	7.5	10	18	25	35
Max. stop force ²⁾ in end positions	100	200	300	500	700	1000
(housing)						
Min. resetting force ³⁾	0.7	0.9	1.2	2.5	3.5	5

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position. This value is reduced correspondingly in the event of an extended external end position

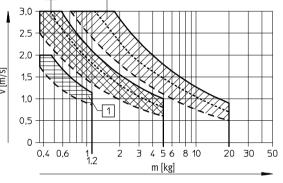
2) If the max. stop force is exceeded, a fixed stop (e.g. YSRA) 0.5 mm must be fitted before the end of stroke

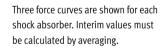
3) This is the maximum force which may act upon the piston rod, allowing for full extension of the shock absorber (e.g. protruding stem)

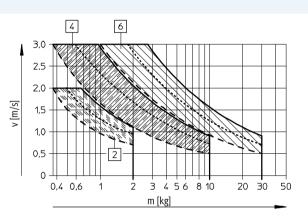

Energies [J]						
Size	4	5	7	8	10	12
Max. energy absorption per stroke	0.8	1.3	2.5	4	8	12
Max. energy absorption per hour	7000	10000	15000	21000	30000	41000
Max. residual energy	0.006	0.01	0.01	0.02	0.03	0.05

Mass range	[kg]
------------	------

Mass range [kg]						
Size	4	5	7	8	10	12
Mass range up to	1.2	2	5	10	20	30

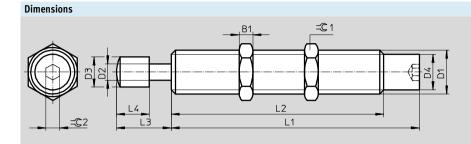

Shock absorbers DYSW


Technical data


Selection graph for self-adjusting shock absorbers with progressive characteristics DYSW Impact velocity dependent on mass m

3 5 З.0 2.5 2,0 v [m/s] 1,5 1.0 1 0,5 0 0,4 0,6 2 ż 456 8 10 20 30 50 1.2 m [kg]

1	DYSW-4-6-Y1F
2	DYSW-5-8-Y1F
3	DYSW-7-10-Y1F


4	DYSW-8-14-Y1F
5	DYSW-10-17-Y1F

6 DYSW-12-20-Y1F

Shock absorber	Force A =	Force A =	Force A =
DYSW-4-6-Y1F DYSW-5-8-Y1F	0 N 0 N	- 50 N	50 N 100 N
DYSW-7-10-Y1F	0 N	75 N	150 N
DYSW-8-14-Y1F	0 N	100 N	200 N
DYSW-10-17-Y1F	0 N	150 N	300 N
DYSW-12-20-Y1F	0 N	200 N	400 N

Shock absorbers DYSW

Technical data

Shock absorber in end position

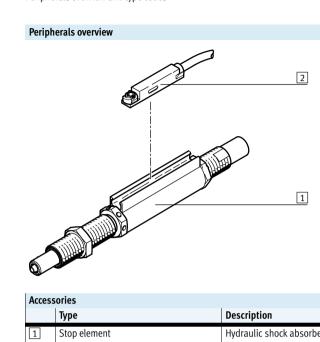
Download CAD data → www.festo.com

FESTO

- 📲 - Note

To increase the service life: Avoid the ingress of dirt or fluids into the piston chamber via the piston rod by, for example, using a cover.

Size	B1	D1	D2 Ø	D3 Ø	D4 Ø	L1
[mm]						+0.1
4	2.5	M6x0.5	2	3.5±0.05	5.35±0.05	35.5
5	3	M8x1	2.5	4.7±0.05	6.7±0.05	43.1
7	3.5	M10x1	3	6±0.1	8.6±0.05	52.05
8	4	M12x1	4	7±0.1	10.4±0.1	66.05
10	5	M14x1	5	9±0.1	12.4±0.1	77.55
12	5	M16x1	6	11±0.1	14.4±0.1	90.75

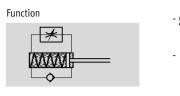

Size [mm]	L2 +0.3 -0.2	L3	L4	∹©1	=©2	Max. tightening torque ∹©1 [Nm]
4	25.5	6+0.30/-0.24	4±0.05	8	2	1
5	33.1	8+0.32/-0.28	5.5±0.1	10	2.5	2
7	41.05	10+0.37/-0.28	7±0.2	13	3	3
8	53.05	14+0.37/-0.28	8±0.2	15	4	5
10	64.55	17+0.37/-0.28	10±0.2	17	4	8
12	77.75	20+0.45/-0.30	12±0.2	19	5	20

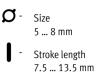
Ordering data	l	
Size	Part No.	Туре
[mm]		
4	548070	DYSW-4-6-Y1F
5	548071	DYSW-5-8-Y1F
7	548072	DYSW-7-10-Y1F
8	548073	DYSW-8-14-Y1F
10	548074	DYSW-10-17-Y1F
12	548075	DYSW-12-20-Y1F

Stop elements YSRWJ Peripherals overview and type codes

FESTO

Access	Accessories						
	Туре	Description	→ Page/Internet				
1	Stop element	Hydraulic shock absorber with progressive cushioning characteristic.	39				
	YSRWJ	The cushioning length is adjustable					
2	Proximity switches	Sensing option for end positions	49				
	SME-/SMT-8						


Type codes


		YSRWJ]-[7	-[10	-	A
Туре								
YSRWJ	Shock absorber							
Size								
Stroke [mm]								
Position sens	ing							
А	Position sensing							

Stop elements YSRWJ

Technical data

General technical data Size 5 7 8 Stroke [mm] 8 10 14 Mode of operation A piston rod in front of the shock absorber transmits the force to the shock absorber. This serves as the end stop and actuates the proximity sensor via a magnet mounted on it Single acting, pushing Cushioning Self-adjustable Cushioning length [mm] 8 10 14 Type of mounting With locknut Position sensing Via proximity sensor 0.05 ... 2 Impact velocity [m/s] 0.05 ... 3 Repetition accuracy [mm] 0.02 Mounting position Any Product weight 75 110 [g] 45 Ambient temperature 0 ... +60 [°C] Corrosion resistance class CRC¹⁾ 2

 Corrosion resistance class CRC 2 to Festo standard FN 940070 Moderate corrosion stress. Indoor applications in which conder

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Reset time [s]			
Size	5	7	8
Reset time ¹⁾	≤ 0.2		

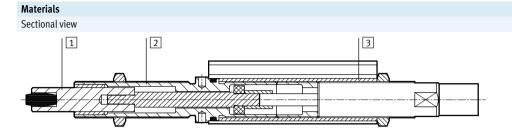
1) The specified technical data refers to ambient temperature. At higher temperatures in the 80 °C range, the max. mass and the cushioning work must be reduced by 50% approx. At 0 °C, the reset time may be up to 1 second

Forces [N]

Size	5	7	8			
Min. insertion force ¹⁾	5	18	80			
Max. stop force ²⁾ in end positions	200	300	500			
Min. resetting force ³⁾	1.5	2	3.5			

1) This is the minimum force that must be applied so that the shock absorber is pushed exactly into the retracted end position

2) Impact force may not exceed the maximum specified value

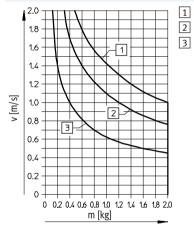

3) This is maximum force that can be exerted on the piston rod so that the shock absorber advances fully

Energies [J]			
Size	5	7	8
Max. energy absorption per stroke	1	2	3
Max. energy absorption per hour	10000	15000	21000
Max. residual energy	0.01		0.02

Mass range [kg]						
Size	5	7	8			
Permissible mass range up to	2	5	10			

Stop elements YSRWJ Technical data

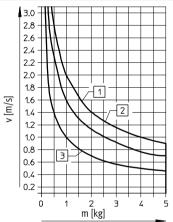
FESTO



Stop e	Stop element					
1	Stop bolt	Steel, stainless and reinforced				
2	Distance sleeve	Galvanised steel				
3	Threaded barrel	Brass, nickel-plated				
-	Note on materials	Free of copper and PTFE				
		Conforms to RoHS				

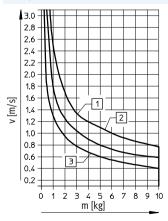
Selection graphs for limit stops with shock absorber YSRWJ

Impact velocity dependent on mass m


YSRWJ-5-8-A

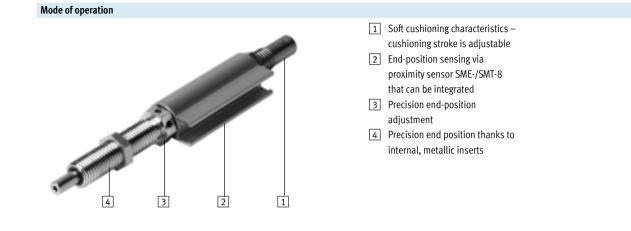
With additional force A = 50 N 3 With additional force A = 100 N

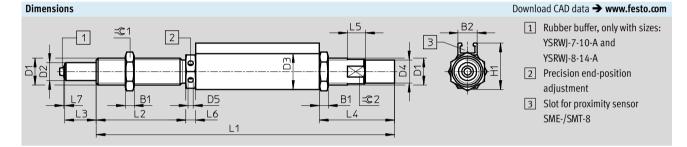
Without additional force


YSRWJ-7-10-A

1 Without additional force

- 2 With additional force A = 75 N
- 3 With additional force A = 150 N

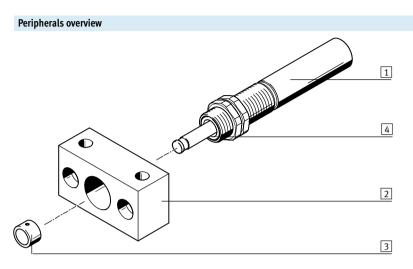

YSRWJ-8-14-A



Without additional force 1

- 2 With additional force A = 100 N
- 3 With additional force A = 150 N

Stop elements YSRWJ Technical data


Size	B1	B2	D1	D2	D3	D4	D5	H1	L1
[mm]		+0.4			+0.1		+0.1	+0.3	+0.3/-0.1
5	3	8.1	M8x1	4	12	6.7 ±0.05	2	16.5	97.4
7	3.5	8.5	M10x1	6	14	8.6 ±0.05	2.4	18.3	144.8
8	4	8.5	M12x1	8	16	10.4 ±0.1	2.4	20.75	133.3
Size	L2	L3	L4	L5	L6	L7	=©1	=©2	Max. tightening
									torque =©1
[mm]	+0.4		+0.45/-0.1	+0.5	+0.1/-0.55	+0.3			[Nm]
5	32.5	8 +0.7/-0.55	21.6	5	4.4	0.5	10	7	2
7	40	10 +0.8/-0.55	21.1	6	4	0.5	13	9	3
8	40	14 +0.8/-0.55	33.6	8	4.4	0.5	15	11	5

Ordering d	Ordering data					
Size	Part No.	Туре				
[mm]						
5	192968	YSRWJ-5-8-A				
7	192967	YSRWJ-7-10-A				
8	192966	YSRWJ-8-14-A				

Hydraulic cushioning cylinders DYHR Peripherals overview and type codes

FESTO

Access	Accessories								
	Туре	Brief description	→ Page/Internet						
1	Hydraulic cushioning cylinder DYHR	Hydraulic cushioning cylinder with spring return for slow feed speeds	43						
2	Mounting flange	Mounting option for hydraulic cushioning cylinder	46						
3	YSRF Buffer	For protecting the piston rod	48						
	YSRP								
4	Wiper seal; hardened piston rod	The wiper seal (prevents the ingress of dirt) and the hardened piston rod (protects against scratches) greatly increase the service life	-						

Type codes

		DYHR —	16	-	20	 Y5
Туре						
DYHR	Hydraulic cushioning cylinder					
Size						
Stroke [m	m]					
Design ch	aracteristic					
Y5	Internal hex for setting the flow control valve					

Hydraulic cushioning cylinders DYHR Technical data

Function

FESTO

General technical data

General technical data										
Size	16	16			25	32				
Stroke	[mm]	20	40	25	50	40	60			
Mode of operation	Hydraulic cus	shioning cylind	ler with spring	return						
		Single-acting	, pushing							
Braking speed	Adjustable	Adjustable								
Type of mounting		Via lock nut								
Max. impact velocity	[m/s]	0.3								
Mounting position		Any								
Feed speed	[mm/s]	0.2 100								
Product weight	[g]	190	255	360	440	720	1380			
Ambient temperature	0+80									
Corrosion resistance class CRC ¹⁾	Corrosion resistance class CRC ¹⁾			1						

1) Corrosion resistance class 1 according to Festo standard 940 070

Components subject to low corrosion stress. Transport and storage protection. Parts that do not have primarily decorative surface requirements, e.g. in internal areas that are not visible or behind covers

Reset times [s]				
Size	16	20	25	32
Short stroke ¹⁾	≤ 0.4	≤ 0.5	≤ 0.8	≤ 1.2
Long stroke ¹⁾	≤ 0.8	≤1	-	-

1) Increased reset times must be expected at low temperatures (0 °C). Up to 5 s with sizes 12 and 16 and up to 12 s with sizes 25 and 32.

Forces [N]

Size	16	20	25	32
Min. feed force ¹⁾	160	250	400	640
Max. feed force ²⁾	1600	2500	4000	6400
Resetting force ³⁾	5.4	9	12.5	18

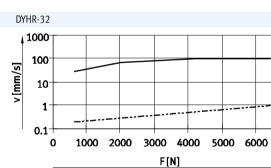
Min. required force for constant braking speed with repetition accuracy
 Corresponds to max. force in the end position

3) With piston rod advanced

Energies [J]								
Size	16		20		25	32		
Stroke	[mm]	20	40	25	50	40	60	
Max. energy absorption per strok	32	64	62.5	125	160	384		
Max. energy absorption per hour	100000	150000	135000	200000	220000	330000		
Max. residual energy in the end p	0.16		0.32		0.8	2		

Hydraulic cushioning cylinders DYHR Technical data

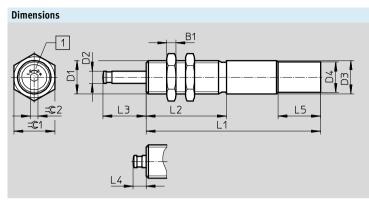
Materials


Sectional view 1 2 NAMARA Hydraulic cushioning cylinder 1 Piston rod Hardened high-alloy steel 2 Housing Galvanised steel Seals Nitrile rubber Note on materials RoHS-compliant Braking speed v as a function of motive force F and flow control valve setting DYHR-16 DYHR-20 1000 1000 100 100 v [mm/s] v [mm/s] 10 10 1 1 0.1 0.1 200 400 600 800 1000 1200 1400 1600 1800 0 0 500 1000 1500 2000 2500 3000 F[N] F[N] DYHR-25 DYHR-32 1000 1000 100 100 v [mm/s] v [mm/s] 10 10 1 1

0.1 500 1000 1500 2000 2500 3000 3500 4000 4500 0 F[N]

Flow control valve open

Flow control valve closed



FESTO

7000

Hydraulic cushioning cylinders DYHR Technical data

FESTO

Download CAD data → www.festo.com

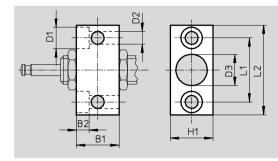
- + = Braking speed becomes harder
- = Braking speed becomes softer

1 Speed control

Size	Stroke [mm]	B1	D1	D2 Ø	D3 Ø +0.15/-0.1	D4 Ø +0.15	L1
16	20		No. 1 05				115±0.1
	40	6	M20x1.25	8	20	-	150±0.1
20	25	0	Ma(4.25	10	24		138±0.1
	50	8	M24x1.25	10	24	-	181±0.1
25	40	10	M30x1.5	12	30	28.8	178±0.1
32	60	12	M37x1.5	15	37	34.8	230±0.15
Size	Stroke	L2	L3	L4	L5	=©1	=©2
Size	Stroke [mm]	L2 ±0.1	L3	L4	L5 ±0.2	-G1	=©2
Size		±0.1	L3 28.5+0.4/-0.3		±0.2		
	[mm]			L4 - 8.5+0.45/-0.4		=©1 24	≓G2 5
	[mm] 20	±0.1	28.5+0.4/-0.3	- 8.5+0.45/-0.4	±0.2	24	5
16	[mm] 20 40	±0.1	28.5+0.4/-0.3 48.5+0.4/-0.3		±0.2		
16	[mm] 20 40 25	±0.1	28.5+0.4/-0.3 48.5+0.4/-0.3 35.6+0.4/-0.3	- 8.5+0.45/-0.4	±0.2	24	5

Ordering	Ordering data						
Size	Stroke	Part No.	Туре				
	[mm]						
16	20	1155690	DYHR-16-20-Y5				
	40	1155691	DYHR-16-40-Y5				
20	25	1155692	DYHR-20-25-Y5				
	50	1155693	DYHR-20-50-Y5				
25	40	1155694	DYHR-25-40-Y5				
32	60	1155696	DYHR-32-60-Y5				

Accessories for cushioning components


Technical data

FESTO

Mounting flange YSRF/YSRF-C

Material: Steel

Possible combinations						
Cushioning components	DYSR		YSR-C	YSRW	YDR	
Mounting flange	Y5	Y5-T	_			
YSRF						
YSRF-8	-	-	∎1)	∎1)	-	
YSRF-12		-	-	-	-	
YSRF-16		-	-	-		
YSRF-20		-	-	-		
YSRF-25		-		-		
YSRF-32		_		-		
YSRF-C						
YSRF-8-C		-			-	
YSRF-12-C	-				-	
YSRF-16-C	-				-	
YSRF-20-C	-				-	

1) For shock absorber size \varnothing 7

Dimension	Dimensions and ordering data											
YSRF												
For size	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight	Part No.	Туре
[mm]										[g]		
8	16	5.5	10	5.5	10.2	16	25	38	2	50	11681	YSRF-8
12	25	6.8	11	6.6	15.2	25	36	50	2	175	11682	YSRF-12
16	30	9	15	9	20.2	30	45	63	2	300	11683	YSRF-16
20	36	11	18	11	24.2	36	56	78	2	535	11684	YSRF-20
25	45	13	20	13.5	30.2	45	63	86	2	895	11685	YSRF-25
32	55	15	24	15.5	37.2	55	80	108	2	1730	11686	YSRF-32

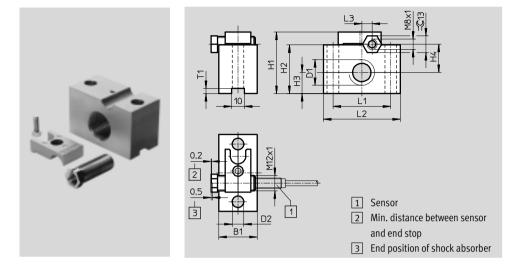
1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

YSRF-C												
For size [mm]	B1	B2	D1	D2	D3	H1	L1	L2	CRC ¹⁾	Weight [g]	Part No.	Туре
8	20	5.5	10	5.5	12.2	20	28	41	2	90	34575	YSRF-8-C
12	25	6.8	11	6.6	16.2	25	36	50	2	180	34576	YSRF-12-C
16	32	9	15	9	22.2	32	45	63	2	330	34577	YSRF-16-C
20	40	11	18	11	26.2	40	56	78	2	700	34578	YSRF-20-C

1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.



Accessories for cushioning components Technical data

FESTO

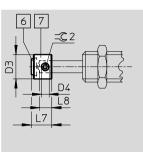
Mounting flange YSRF-S-C

Material: Aluminium, steel Free of copper and PTFE

Possible combinations				
Cushioning components	YSR-C	YSRW		
Mounting flange				
YSRF-S-8-C				
YSRF-S-12-C				
YSRF-S-16-C				
YSRF-S-20-C				

Dimension	Dimensions and ordering data													
For size	B1	D1	D2 Ø	H1	H2	H3	H4	L1	L2	L3	T1	Weight	Part No.	Туре
[mm]			Ø									[g]		
8	20	M12x1	5.5	35	25	9.5	16	32	45	4	2	12	34579	YSRF-S-8-C
12	25	M16x1	6.6	42	32	12.5	20	36	50	3	4	130	34580	YSRF-S-12-C
16	30	M22x1.5	9	48	38	16.5	22	45	60	8	4	180	34581	YSRF-S-16-C
20	30	M26x1.5	11	52	42	19	23.5	56	80	11.5	4	250	34582	YSRF-S-20-C

Note


Inductive sensors for position sensing → page 49

Accessories for cushioning components Technical data

Buffer YSRP

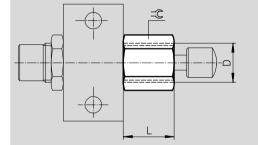
Material: Steel, polyurethane

6 Polyurethane insert

7 Buffer

Dimensions and ordering data

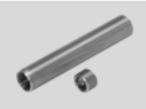
Dimension	is and ordering up	11.0							
For size	D3	D4	L7	L8	=© 2	CRC ¹⁾	Weight	Part No.	Туре
[mm]							[g]		
8	8	M2	6,7	4	0,9	2	4	539638	YSRP-8
12	12	M4	10	6	2	2	7	11133	YSRP-12
16	16	M5	13.5	8	2.5	2	15	11134	YSRP-16
20	20	M6	17	10	3	2	27	11135	YSRP-20
25	25	M8	20.5	12	4	2	52	11136	YSRP-25
32	32	M8	26	15	4	2	110	11137	YSRP-32


1) Corrosion resistance class CRC 2 to Festo standard FN 940070

Moderate corrosion stress. Indoor applications in which condensation may occur. External visible parts with primarily decorative requirements for the surface and which are in direct contact with the ambient atmosphere typical for industrial applications.

Stop limiter YSRA-C

Material: Steel


Dimensior	is and ordering data				
For size	D	L	D=	Weight	Part No. Type
[mm]				[g]	
7	M10x1	14.5	13	12	150932 YSRA-7-C
8	M12x1	18	15	28	150933 YSRA-8-C
12	M16x1	24.5	19	48	150934 YSRA-12-C

Accessories for cushioning components Technical data

Reducing sleeve DAYH

Material: Stainless steel

To improve the cushioning performance in the case of underload, the built-in shock absorber can be replaced by the next smallest shock absorber with the help of the reducing sleeve.

Built-in shock absorber	Part No.	Reducing sleeve	Part No.	Next smallest shock absorber
YSRC				
YSR-5-5-C	1165476	DAYH-4	540060	YSR-4-4-C
DVCC				
DYSC				
DYSC-8-8-Y1F	1165484	DAYH-7	548012	DYSC-7-5-Y1F
DYSC-7-5-Y1F	1165480	DAYH-5	548011	DYSC-5-5-Y1F
DYSW				
DYSW-12-20-Y1F	1165491	DAYH-10	548074	DYSW-10-17-Y1F
DYSW-10-17-Y1F	1165488	DAYH-8	548073	DYSW-8-14-Y1F
DYSW-8-14-Y1F	1165484	DAYH-7	548072	DYSW-7-10-Y1F
DYSW-7-10-Y1F	1165480	DAYH-5	548071	DYSW-5-8-Y1F
DYSW-5-8-Y1F	1165476	DAYH-4	548070	DYSW-4-6-Y1F

Ordering data	a – Proximity sensors for T-slot, magneto-	resistive				Technical data 🗲 Internet: sm
	Type of mounting	Switch output	Electrical connection	Cable length [m]	Part No.	Туре
N/O contact						
	Insertable in the slot from above, flush	PNP	Cable, 3-wire	2.5	574335	SMT-8M-A-PS-24V-E-2,5-OE
A BE A	with cylinder profile, short design		Plug M8x1, 3-pin	0.3	574334	SMT-8M-A-PS-24V-E-0,3-M8D
			Plug M12x1, 3-pin	0.3	574337	SMT-8M-A-PS-24V-E-0,3-M12
		NPN	Cable, 3-wire	2.5	574338	SMT-8M-A-NS-24V-E-2,5-OE
			Plug M8x1, 3-pin	0.3	574339	SMT-8M-A-NS-24V-E-0,3-M8D
N/C contact						
C. S. A	Insertable in the slot from above, flush with cylinder profile, short design	PNP	Cable, 3-wire	7.5	574340	SMT-8M-A-PO-24V-E-7,5-OE

Ordering data	- Proximity sensors for T-slot, magnetic	reed				Technical data 🗲 Internet: sme
	Type of mounting	Switch	Electrical connection	Cable length	Part No.	Туре
		output		[m]		
N/O contact						
	Insertable in the slot from above, flush	Contacting	Cable, 3-wire	2.5	543862	SME-8M-DS-24V-K-2,5-OE
CT B A	with cylinder profile		Plug M8x1, 3-pin	0.3	543861	SME-8M-DS-24V-K-0,3-M8D
*	Insertable in the slot lengthwise, flush	Contacting	Cable, 3-wire	2.5	150855	SME-8-K-LED-24
	with the cylinder profile	0	Plug M8x1, 3-pin	0.3	150857	SME-8-S-LED-24
N/C contact						
	Insertable in the slot lengthwise, flush with the cylinder profile	Contacting	Cable, 3-wire	7.5	160251	SME-8-O-K-LED-24

Accessories for cushioning components Technical data

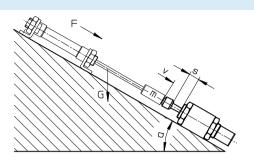
Ordering data	- Inductive sensors	M8, for mounting flange	YSRF-S-C				Technical data 🗲 Internet: sien
	Electrical connection	ı	Switch LED Cable		Cable length	Part No.	Туре
	Cable	M8 plug	output		[m]		
NO contact							
a filter	3 wires	-	PNP		2.5	150386	SIEN-M8B-PS-K-L
and the second s	-	3-pin	PNP		-	150387	SIEN-M8B-PS-S-L
NC contact							
and the second s	3 wires	-	PNP		2.5	150390	SIEN-M8B-PO-K-L
and the second se	-	3-pin	PNP		-	150391	SIEN-M8B-PO-S-L

Ordering data	a – Connecting cables				Technical data 🗲 Internet: nebu
	Electrical connection, left	Electrical connection, right	Cable length [m]	Part No.	Туре
MILES .	Straight socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541333	NEBU-M8G3-K-2.5-LE3
and the second s			5	541334	NEBU-M8G3-K-5-LE3
	Angled socket, M8x1, 3-pin	Cable, open end, 3-wire	2.5	541338	NEBU-M8W3-K-2.5-LE3
Contraction of the second seco			5	541341	NEBU-M8W3-K-5-LE3

Calculation tool for cushioning components

Technical data

2. Select a shock absorber from the This selection aid helps you find the 1. Determine the following values, right shock absorber for every effective at the time of impact: graphs on the following pages. Note application. - Force (A) 3. Check your selection on the basis Sizing software When you are choosing a shock - Equivalent mass mequiv of its maximum cushioning Shock absorber selection - Impact velocity (v) absorber, we recommend that you energy (W_{max.}) →www.festo.com proceed as follows: When you are choosing a shock Permissible energy load per Max. energy absorption per hour absorber for your application, ensure stroke: Max. residual energy that the following values are not W_{min}. = 25% Max. stop force in end position exceeded: Wmax. = 100% Recommended energy load per stroke: = 50% ... 100 % Wopt. The (angular) velocity required in the In order to prevent damage to the The fact that the (angular) velocity formulae is the velocity at the time of drive concerned, calculations should appears in the calculation as a the impact on the shock absorber. in the interests of safety be based on squared value means that the This depends on the dynamic the following values: expected error becomes considerably characteristics of the drive component = 1.25 ... 2 v_m larger. The calculation can thus be v and is thus difficult to determine. $\omega = 1.25 \dots 2 \omega_m$ regarded only as an approximation. Guide values for linear motions: The safety factor does, however, Factor 2 with strokes < 50 mm, It is better to determine the mean ensure that the selected shock absorber is not too small. velocity ($v_m = s/t$ or $\omega_m = \phi/t$). factor 1.5 with strokes > 50 mm and ، 100 mm. factor 1.25 with strokes > 100 mm. The following formulae are required A = F + Gfor the calculation: $A = F + m \times g \times \sin \alpha$ $W_{total} = \frac{1}{2} \times m \times v^2 + A \times s < W_{max}$ $W_{h} = W_{total} \times Stroke \div Hours < W_{hmax}$ The following applies additionally for $m_{equiv.} = \frac{J}{R^2}$ rotary motions: $v = \omega \times R$ $A = \frac{M}{R} + m \times g \times \sin \alpha \times \frac{a}{R}$ = Additional force = F + G [N] The following abbreviations are used: Α v = Impact velocity [m/s] = Mass moment of inertia T [kg x m²] F = Cylinder force minus m_{equiv.}= Equivalent mass [kg] frictional force [N] = Acceleration due to gravity = Distance between mass pivot g R G = Force due to weight 9.81 [m/s²] point and shock absorber [m] $= m x g x sin \alpha$ = Shock absorber stroke [m] = Angular velocity [rad/s] S ω α = Impact angle [°] = Drive torque [Nm] Μ Wtotal= Cushioning work/stroke [J] Special cases: = Distance between centre of а W_h = Cushioning work/hour [J] = 0°: Horizontal motion gravity of mass and pivot point α G = 0 = 90°: Downward motion α G = m x g= 90°: Upward motion: α G = -m x g


Calculation tool for cushioning components

FESTO

Technical data

Sizing example for linear motion

This example illustrates the procedure for the selection of a shock absorber for the application shown in the adjacent drawing:

In the process of selecting shock absorbers on the basis of the graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (m_{equiv}) and the impact velocity (v). The curves move to the left as the additional force increases.

Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the

graphs show (continuous line), possible choices are the shock absorbers DYSR-25-40 and YSR-25-40-C. We must now determine whether the maximum permissible values for cushioning work (W_{max}) and cushioning work per hour (W_{hmax}) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs). Experiment: $W_{total} = \frac{1}{2} \times m \times v^2 + A \times s$ $= (1/2 \times 50 \times 1.5^2 + 537 \times 0.04) Nm = 78 J$

W_h = W_{total} x strokes/h = 78 Nm x 1,800 = 140000 J For the above application, both shock absorbers are suitable. Further selection criteria are adjustment facilities and size.

m = 50 kg

v

α = 45°

F

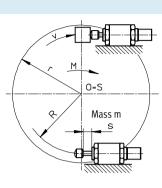
= 1.5 m/s

= 190 N

 $(\emptyset 20 \text{ mm with } p = 6 \text{ bar,} 1800 \text{ strokes per hour})$

Result		
	DYSR-25-40	YSR-25-40-C
W _{total}	78 J	78 J
W _h	140000 J	140000 J
W _{max} . ¹⁾	160 J > W _{total}	160 J > W _{total}
W _{hmax} .	220000 > W _{max.}	150000 > W _{max.}

1) The degree of utilisation is 49% in both cases.



Calculation tool for cushioning components

Technical data

Sizing example for rotary motion

Example for rotary motion: $m_{equiv} = J/R^2 = 8 \text{ kg}$ = $\omega x R$ ٧ = M/R = 40 NА

In the process of selecting shock absorbers on the basis of graphs (see data sheets), the force (A) is governed by the first curve to the right of the point of intersection of the equivalent mass (mequiv) and the impact velocity (v). The curves move to the left as the additional force increases. Three force curves are given for each shock absorber. Interim values must be calculated by averaging. As the graphs show (dotted line), possible choices are the shock absorbers

We must now determine whether the maximum permissible values for cushioning work (W_{max.}) and cushioning work per hour (Whmax.) are not being exceeded. These maximum permissible values and the stroke length (s) can be found in the tables (below the graphs).

Note: The impact angle must be noted with rotary applications.

 $\tan \alpha = \frac{s}{R}$

s = Cushioning stroke

Experi	ment:	
Wtotal	$= \frac{1}{2} \times m$	$x v^2 + A$

₩total	$= \frac{1}{2} \times 111 \times V^{-} + A \times S$
	$=(1/2 \times 8 \times 2^{2} +$
	40 x 0.02) J = 17 J

Wh = W_{total} x strokes/h = 17 J x 900 = 15300 J

For the above application, both shock absorbers are suitable. Further selection criteria are adjustment facilities and size.

 $= 2 \text{ kg m}^2$

= 4 rad/s

= 0.5 m

= 20 Nm

900 strokes per hour

J

ω

R

Μ

FESTO

Result		
	DYSR-16-20 ³⁾	YSR-16-20-C
W _{total}	17 J	17 J
W _h	15300 J	15300 J
W _{max} .	$32 J > W_{total}^{1}$	$30 \text{ J} > \text{W}_{\text{total}}^{2)}$
Whmax.	100000 > W _{max.}	64000 > W _{max} .

The degree of utilisation is 53%. 1) The degree of utilisation is 57%.

DYSR-16-20 and YSR-16-20-C.

2)